|国家科技期刊平台
首页|期刊导航|新型炭材料(中英文)|PES-C增韧E51/DETDA环氧树脂及其炭纤维复合材料的研究

PES-C增韧E51/DETDA环氧树脂及其炭纤维复合材料的研究OA北大核心CSTPCD

Cardo poly(ether sulfone)toughened E51/DETDA epoxy resin and its carbon fiber composites

中文摘要英文摘要

一种能有效提高炭纤维复合材料层间韧性的增韧剂对于各种应用都至关重要.本文研究了酚酞聚芳醚砜(PES-C)对E51/DETDA环氧树脂及其炭纤维复合材料的增韧效果.SEM结果显示,PES-C/环氧树脂混合物形成了海岛相和双连续相结构.加入15phrPES-C后,混合物的Tg增加了 51.5 ℃.同时,混合物的弯曲强度、冲击强度和断裂韧性分别提高了 41.1%、186.2%和42.7%.这些提升可归因于PES-C/环氧树脂系统的相结构.此外,PES-C薄膜被用作夹层以改善炭纤维复合材料的二型断裂韧性(GⅡC).7μmPES-C薄膜增韧层压板的GⅡC值比对照层压板提高了 80.3%,GⅡe的显著增加可归因于插层区域的内聚破坏和塑性变形.

A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfone)(PES-C)on E51/DETDA epoxy and its carbon fiber composites(CFCs).Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island(of dispersed phase)structures to bi-continuous structures(of the matrix)as the PES-C content increased,which is associated with reaction-induced phase separation.After adding 15 phr PES-C,the glass transition temperature(Tg)of the blends increased by 51.5 ℃,and the flexural strength,impact strength and fracture toughness of the blends were improved by 41.1%,186.2%and 42.7%,respectively.These improvements could be attributed to the phase separation structure of the PES-C/epoxy sys-tem.A PES-C film was used to improve the mode-Ⅱ fracture toughness(GⅡC)of CFCs.The GⅡC value of the 7 μm PES-C film toughened laminate was improved by 80.3%compared to that of the control laminate.The increase in GⅡC was attributed to cohesive failure and plastic deformation in the interleaving region.

武荣鹏;张兴华;魏兴海;经德齐;苏维国;张寿春

中国科学院山西煤炭化学研究所先进热塑性复合材料工程研究中心,山西太原 030001||中国科学院大学材料与光电研究中心,北京 100049||中国科学院山西煤炭化学研究所中科院炭材料重点实验室,山西太原 030001中国科学院山西煤炭化学研究所先进热塑性复合材料工程研究中心,山西太原 030001||中国科学院山西煤炭化学研究所中科院炭材料重点实验室,山西太原 030001海军工程大学舰船综合动力系统国家重点实验室,湖北武汉 430033

环氧树脂炭纤维复合材料酚酞聚芳醚砜断裂韧性

Epoxy resinCFRPPES-CToughness

《新型炭材料(中英文)》 2024 (004)

681-691 / 11

This work was supported by the Key Research and Development Program of Shanxi Province(202003D111002),Major Science and Technology Project in Shanxi Province(202101040201003),the National Natural Science Foundation of China(51903249)and the Innovation Fund Project of Shanxi Institute of Coal Chemistry,Chinese Academy of Sciences(SCJC-XCL-2022-12). 山西省重点研发计划资助项目(202003D111002);山西省科技重大专项计划(202101040201003);国家自然科学基金(51903249);中国科学院山西煤炭化学研究所创新基金项目(SCJC-XCL-2022-12).

10.1016/S1872-5805(23)60741-3

评论