| 注册
首页|期刊导航|液晶与显示|基于轻量化的DeepLabV3+遥感图像地物分割方法

基于轻量化的DeepLabV3+遥感图像地物分割方法

马静 郭中华 马志强 马小艳 李迦龙

液晶与显示2024,Vol.39Issue(8):1001-1013,13.
液晶与显示2024,Vol.39Issue(8):1001-1013,13.DOI:10.37188/CJLCD.2023-0293

基于轻量化的DeepLabV3+遥感图像地物分割方法

Remote sensing image land feature segmentation method based on lightweight DeepLabV3+

马静 1郭中华 1马志强 2马小艳 1李迦龙1

作者信息

  • 1. 宁夏大学 电子与电气工程学院,宁夏 银川 750021||宁夏大学 沙漠信息智能感知重点实验室,宁夏 银川 750021
  • 2. 宁夏大学 电子与电气工程学院,宁夏 银川 750021
  • 折叠

摘要

Abstract

A lightweight network based DeepLabV3+remote sensing image land feature segmentation method is proposed to address the errors caused by the loss of detail information and imbalanced categories in remote sensing image segmentation.Firstly,MobileNetV2 is adopted to replace the backbone network in original baseline network to improve training efficiency and reduce model complexity.Secondly,the dilation rate of atrous convolutions within ASPP structure is increased and max-pooling in final ASPP layer is incorporated to effectively capture context information at different scales.At the same time,SE attention mechanism is introduced into each branch of ASPP,and ECA attention mechanism is introduced after extracting shallow features to improve the model's perception ability for different categories and details.Finally,the weighted Dice-Local joint loss function is used for optimization to address class imbalance issues.The improved model is validated on both the CCF and Huawei Ascend Cup competition datasets.Experimental results show that the proposed method outperforms original DeepLabV3+model on both test sets,with various metrics showing different degrees of improvement.Among them,mIoU reaches 73.47%and 63.43%,representing improvements of 3.24%and 15.11%,respectively.The accuracy reaches 88.28%and 86.47%,showing enhancements of 1.47%and 7.83%,respectively.The F1 index reaches 84.29%and 77.04%,increasing by 3.86%and 13.46%,respectively.The improved DeepLabV3+model can better solve the problems of loss of detail information and class imbalance,which improves the performance and accuracy of remote sensing image feature segmentation.

关键词

MobileNetV2/空洞卷积/注意力机制/损失函数

Key words

MobileNetV2/dilated convolution/geometric figure/attention mechanism/loss function

分类

信息技术与安全科学

引用本文复制引用

马静,郭中华,马志强,马小艳,李迦龙..基于轻量化的DeepLabV3+遥感图像地物分割方法[J].液晶与显示,2024,39(8):1001-1013,13.

基金项目

国家自然科学基金(No.62365016) (No.62365016)

中央支持地方专项资金(No.2023FRD05034)Supported by National Natural Science Foundation of China(No.62365016) (No.2023FRD05034)

Central Support for Local Special Funds(No.2023FRD05034) (No.2023FRD05034)

液晶与显示

OA北大核心CSTPCD

1007-2780

访问量0
|
下载量0
段落导航相关论文