|国家科技期刊平台
首页|期刊导航|液晶与显示|基于像素级水平的通道自适应水下图像增强算法

基于像素级水平的通道自适应水下图像增强算法OA北大核心CSTPCD

Channel adaptive underwater image enhancement algorithm based on pixel level

中文摘要英文摘要

现有基于深度学习的算法采用编解码方式在高维特征中对水下图像进行增强,没有考虑水下图像的通道差异性退化特点,导致增强效果普遍较差.针对这一问题,提出了一种基于像素级水平的通道自适应水下图像增强算法,将水下图像在像素级分R、G和B 三通道进行增强.此算法分4个阶段,通过4个阶段的分通道特征提取完成整个增强过程.首先,通过增强网络的局部和全局语义,优化通道衰减来修复上下文的颜色通道;其次,通过注意机制聚合空间和通道特征,并抑制不相关的颜色定位跳跃信息;然后,通过优化注意力机制调整自适应特征;最后,为提高算法色偏纠正能力,提出了一个色偏纠正模块,在第四阶段使用色偏调节模块进一步调整图像的色偏问题.在UIEB数据集和EUVP数据集上与其他算法进行对比,本文算法的PSNR指标提高了14.35%,SSIM提高了5.8%,UIQM提高了3.2%,UCIQE提高了13.7%,且主观效果最佳.

The existing algorithms based on deep learning enhance underwater images in high-dimensional features by encoding and decoding,without considering the channel difference degradation characteristics of underwater images,resulting in generally poor enhancement effects.To solve this problem,this paper proposes an underwater image pixel-level channel enhancement algorithm based on deep learning,which enhances the underwater image at the pixel level into three channels:R,G and B.The algorithm is divided into four stages,and the whole enhancement process is completed through four stages of sub-channel feature extraction.The network first fixes the color channel of the context by enhancing the local and global semantics of the network and optimizing the channel attenuation.Secondly,the spatial and channel features are aggregated by an attention mechanism,and irrelevant color localization jump information is suppressed.Then,the adaptive features are adjusted by optimizing the attention mechanism.Finally,in order to improve the ability of color shift correction,a color shift correction module is proposed.In the fourth stage,a color shift adjustment module is used to further adjust the color shift problem of the image.Experimental results show that compared with other algorithms on the UIEB dataset and EUVP dataset,the proposed algorithm improves the PSNR index by 14.35%,the SSIM index by 5.8%,the UIQM index by 3.2%,and the UCIQE index by 13.7%,and has the best subjective effect.

彭晏飞;张添淇;安彤

辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105

计算机与自动化

水下图像增强通道增强像素级增强深度学习

underwater image enhancementchannel enhancementpixel-wise enhancementdeep learning

《液晶与显示》 2024 (008)

1037-1045 / 9

国家自然科学基金(No.61772249);辽宁省高等学校基本科研项目(No.LJKZ0358)Supported by National Natural Science Foundation of China(No.61772249);Basic Scientific Research Project of Colleges and Universities of Liaoning Province(No.LJKZ0358)

10.37188/CJLCD.2023-0276

评论