基于边缘计算和改进MobileNet v3的奶牛反刍行为实时监测方法OACSTPCD
Real-Time Monitoring Method for Cow Rumination Behav-ior Based on Edge Computing and Improved MobileNet v3
[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了CA-MobileNet v3网络,进而利用CA-MobileNet v3网络和FedAvg模型聚合算法,设计了联邦式边缘智能模型.在基于拆分式边缘智能的奶牛反刍行为实时识别方法研究中,利用融合协同注意力机制的MobileNet v3网络和Bi-LSTM网络,设计了基于MobileNet-LSTM的拆分式边缘智能模型.[结果和讨论]对比了MobileNet v3、CA-MobileNet、联邦式边缘智能模型,以及拆分式边缘智能模型的识别准确率,其中基于CA-MobileNet v3的联邦式边缘智能模型的平均查准率、召回率、F1-Score、特异性以及准确率分别达到97.1%、97.9%、97.5%、98.3%和98.2%,达到了最佳识别效果.[结论]本研究为奶牛反刍行为的监测提供了一种实时有效的方法,所提出的方法可以在实际应用中使用.
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How-ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono-mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat-ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti-lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli-gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara-tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo-bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap-plied in practical settings.
张宇;李相廷;孙雅琳;薛爱迪;张翼;姜海龙;沈维政
东北农业大学 电气与信息学院,黑龙江哈尔滨 150030,中国哈尔滨航天恒星数据系统科技有限公司,黑龙江哈尔滨 150030,中国东北农业大学 电气与信息学院,黑龙江哈尔滨 150030,中国||哈尔滨电机厂有限责任公司,黑龙江哈尔滨 150030,中国
畜牧业
奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM
cow rumination behaviorreal-time monitoringedge computingimproved MobileNet v3edge intelligence modelBi-LSTM
《智慧农业(中英文)》 2024 (004)
29-41 / 13
The National Key Research and Development Program of China(2023YFD2000700);Supported by The Earmarked Fund for CARS36(CARS36) 基金资助:国家重点研发计划项目(2023YFD2000700);财政部和农业农村部:国家现代农业产业技术体系资助(CARS36)
评论