| 注册
首页|期刊导航|发电技术|基于深度强化学习的有源配电网电压分层控制策略

基于深度强化学习的有源配电网电压分层控制策略

杜婉琳 王玲 罗威 朱远哲 吕鸿 马潇男 周霞

发电技术2024,Vol.45Issue(4):734-743,10.
发电技术2024,Vol.45Issue(4):734-743,10.DOI:10.12096/j.2096-4528.pgt.23029

基于深度强化学习的有源配电网电压分层控制策略

Voltage Hierarchical Control Strategy of Active Distribution Network Based on Deep Reinforcement Learning

杜婉琳 1王玲 1罗威 2朱远哲 1吕鸿 1马潇男 3周霞3

作者信息

  • 1. 广东电网有限责任公司电能质量重点实验室(广东电网有限责任公司电力科学研究院),广东省 广州市 510080
  • 2. 广东电网有限责任公司梅州供电局,广东省 梅州市 514021
  • 3. 南京邮电大学自动化学院、人工智能学院,江苏省 南京市 210023
  • 折叠

摘要

Abstract

[Objectives]The randomness and volatility of distributed power generation poses significant challenges for the voltage control in active distribution network(AND).In this context,there is an urgent need for an efficient voltage control strategy to ensure the safe operation of ADN.[Methods]Based on the deep reinforcement learning method,a voltage control strategy for double-layer regional distribution networks was proposed.First,based on the adjustment characteristics of voltage regulating equipment and the complexity of controllable elements,a regional coordinated control area and a local autonomous control area were designed for the radiating grid structure of the ADN,and the voltage control model of each area was constructed.Then,the model was solved by deep Q-Network(DQN)algorithm and deep deterministic policy gradient(DDPG)algorithm to achieve the purpose of tracking voltage changes in real time,and effectively solve the voltage control problem during the operation of the ADN.Finally,the method was verified by IEEE 33-bus simulation examples.[Results]The DQN algorithm and the DDPG algorithm were used to solve the control variables in the coordinated control region and the local autonomous region respectively,realizing real-time decision-making of voltage regulation in the ADN system,and solving the problems of bidirectional flow of ADN power flow and complex and changeable voltage.[Conclusions]The proposed control strategy has obvious effect on controlling voltage deviation,and has strong accuracy and practicality.

关键词

有源配电网(ADN)/区域协调控制/本地自治控制/深度强化学习/电压控制策略

Key words

active distribution network(ADN)/regional coordination control/local autonomous control/deep reinforcement learning/voltage control strategy

分类

能源科技

引用本文复制引用

杜婉琳,王玲,罗威,朱远哲,吕鸿,马潇男,周霞..基于深度强化学习的有源配电网电压分层控制策略[J].发电技术,2024,45(4):734-743,10.

基金项目

国家自然科学基金项目(52207009) (52207009)

南方电网公司科技项目(GDKJXM20200331). Project Supported by National Natural Science Foundation of China(52207009) (GDKJXM20200331)

Science and Technology Projects of China Southern Power Grid Corporation(GDKJXM20200331). (GDKJXM20200331)

发电技术

OACSTPCD

2096-4528

访问量0
|
下载量0
段落导航相关论文