|国家科技期刊平台
首页|期刊导航|磁共振成像|18F-FDG PET/MR影像组学特征与宫颈癌PD-L1表达的相关性研究

18F-FDG PET/MR影像组学特征与宫颈癌PD-L1表达的相关性研究OA北大核心CSTPCD

Correlation study between 18F-FDG PET/MR imaging radiomic features and PD-L1 expression in cervical cancer

中文摘要英文摘要

目的 探讨18F-氟代脱氧葡萄糖(fluorodeoxyglucose,FDG)正电子发射断层成像(positron emission tomography,PET)/MR影像组学特征与宫颈癌程序性死亡受体配体1(programmed death-ligand 1,PD-L1)表达的相关性.材料与方法 回顾性分析中国医科大学附属盛京医院2017年5月至2023年7月进行了18F-FDG PET/MR扫描的26例宫颈癌患者临床和影像资料,在PET,T1WI及T2WI的图像中对原发灶进行感兴趣区(region of interest,ROI)勾画,将每个患者的每个包含ROI横截面作为样本,以手术标本取样染色,将样本分为阳性组(n=233,73.97%)、阴性组(n=82,26.03%),并基于一阶统计量(Firstorder)从图像中提取影像组学特征.采用独立样本t检验或Mann-Whitney U检验比较两组间特征参数的差异,并分析图像特征参数与PD-L1表达的相关性.将样本按照7:3的比例随机划分为训练集和测试集,将差异有统计学意义的组学特征作为逻辑回归的参数建立PET影像组学模型、MR影像组学模型及PET/MR联合模型,通过受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)分析评估各模型对PD-L1表达诊断的效能.结果 PET图像参数10Percentile(P<0.01)、90Percentile(P<0.01)、Energy(P<0.01)、Interquartile Range(P<0.01)等15个一阶统计量特征与PD-L1表达具有较强的相关性,T1WI图像参数10Percentile(P<0.01)、90Percentile(P<0.05)、Maximum(P<0.05)、Mean(P<0.01)等9个一阶统计量特征与PD-L1表达具有较强的相关性,T2WI图像参数Entropy(P<0.05)、Skewness(P<0.01)、Energy(P<0.05)、Interquartile Range(P<0.01)等9个一阶统计量特征与PD-L1表达具有较强的相关性.在影像组学模型中,训练集PET组学模型、MR组学模型及PET/MR联合模型AUC值分别为0.478[95%置信区间(confidence interval,CI):0.389~0.565]、0.806(95%CI:0.728~0.874)、0.850(95%CI:0.784~0.909).测试集PET组学模型、MR组学模型及PET/MR联合模型AUC值分别为0.528(95%CI:0.381~0.669)、0.737(95%CI:0.623~0.843)、0.817(95%CI:0.715~0.902).结论 18F-FDG PET/MR影像组学特征与宫颈癌PD-L1表达差异有较强的相关性,PET/MR影像组学模型在预测宫颈癌PD-L1表达上具有更好的效能,能在临床上为宫颈癌患者评价PD-L1的表达以优化个体诊疗方案,改善患者预后.

Objective:To explore the correlation between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/MR radiomic features and the expression of programmed death-ligand 1 (PD-L1) in cervical cancer. Materials and Methods:A retrospective analysis was conducted on 26 cervical cancer patients who underwent 18F-FDG PET/MR scans at Shengjing Hospital,China Medical University,from May 2017 to July 2023. Regions of interest (ROIs) were delineated on the images of the primary lesions in PET,T1WI,and T2WI. Each cross-sectional image containing an ROI for each patient was treated as a sample. Based on sampling and staining of surgical specimens,the samples were divided into a positive group (n=233,73.97%) and a negative group (n=82,26.03%). Radiomic features were extracted from the images using first-order statistics. Independent sample t-tests or Mann-Whitney U tests were used to compare the differences in feature parameters between the two groups. The correlation between image feature parameters and PD-L1 expression was analyzed. The samples were randomly divided into training and testing sets in a 7:3 ratio. Radiomic features with statistically significant differences were used as parameters to establish PET radiomic models,MR radiomic models,and PET/MR combined models through logistic regression. The diagnostic performance of each model for PD-L1 expression was evaluated using the area under the curve (AUC) analysis of receiver operating characteristic (ROC) curves. Results:The 15 first-order statistical features of PET images,including 10Percentile (P<0.01),90Percentile (P<0.01),Energy (P<0.01),Interquartile Range (P<0.01),and others,exhibit a strong correlation with PD-L1 expression. Similarly,the T1WI image parameters,such as 10Percentile (P<0.01),90Percentile (P<0.05),Maximum (P<0.05),Mean (P<0.01),and nine other first-order statistical features,show a strong correlation with PD-L1 expression. Additionally,the T2WI image parameters,including Entropy (P<0.05),Skewness (P<0.01),Energy (P<0.05),Interquartile Range (P<0.01),and eight other first-order statistical features,demonstrate a strong correlation with PD-L1 expression. Conclusions:18F-FDG PET/MR radiomic features show a strong correlation with the differential expression of PD-L1 in cervical cancer. The PET/MR radiomic model demonstrates better performance in predicting PD-L1 expression,providing a potential clinical tool for assessing PD-L1 expression in cervical cancer patients to optimize individualized treatment plans and improve patient prognosis.

李旺;李朗俊;刘卓男;孙洪赞

中国医科大学附属盛京医院放射科,沈阳 110022

临床医学

妇科肿瘤宫颈癌程序性死亡受体配体1影像组学磁共振成像正电子发射断层成像

gynecologic oncologycervical cancerprogrammed death-ligand 1radiomicsmagnetic resonance imagingpositron emission tomography

《磁共振成像》 2024 (007)

32-38,45 / 8

沈阳市中青年科技创新人才支持计划项目(编号:RC210138) Shenyang Young and Middle-aged Scientist Science and Technology Innovation Talent Program(No.RC210138).

10.12015/issn.1674-8034.2024.07.006

评论