基于治疗前多参数MRI影像组学特征预测局部晚期宫颈癌患者新辅助化疗后脉管浸润OA北大核心CSTPCD
Prediction of lymphovascular space invasion in locally advanced cervical cancer patients after neoadjuvant chemotherapy based on pre-treatment multi-parameter MRI radiomics features
目的基于治疗前多参数磁共振成像(multi-parametric magnetic resonance imaging,mpMRI)影像组学特征构建模型预测局部晚期宫颈癌(locally advanced cervical cancer,LACC)新辅助化疗(neoadjuvant chemotherapy,NACT)后淋巴脉管间隙浸润(lymphovascular space invasion,LVSI)状态.材料与方法回顾性分析了300例于2013年至2022年来自于河南省人民医院(训练集187人,LVSI阳性73人)和河南省肿瘤医院(验证集113人,LVSI阳性31人)接受NACT并行根治性子宫切除术LACC患者的临床及影像资料.于轴位弥散加权成像(axial diffusion-weighted imaging,Ax_DWI)、矢状位T2加权成像(sagittal T2-weighted imaging,Sag_T2WI)和矢状位对比增强T1加权成像(sagittal T1-weighted contrast-enhanced imaging,Sag_T1C)上勾画肿瘤感兴趣区(region of interest,ROI)并提取特征,利用递归特征消除算法与最小绝对值收缩与选择算法筛选影像组学特征.随后,基于逻辑回归分类器分别建立单序列模型,双序列模型及基于三序列组学特征的联合序列模型.使用受试者工作特征(receiver operating characteristic,ROC)曲线评估各模型性能,使用DeLong检验比较曲线下面积(area under the curve,AUC),通过决策曲线评估模型的临床价值.结果在验证集中,基于Ax_DWI、Sag_T2WI及Sag_T1C构建的单序列模型的AUC分别为0.717[95%置信区间(confidence interval,CI):0.605~0.829]、0.734(95%CI:0.633~0.836)和0.733(95%CI:0.626~0.841);基于Ax_DWI+Sag_T2WI、Ax_DWI+Sag_T1C及Sag_T2WI+Sag_T1C构建的双序列模型的AUC值分别为0.763(95%CI:0.660~0.866)、0.786(95%CI:0.692~0.881)与0.815(95%CI:0.731~0.899);联合序列模型的AUC值为0.829(95%CI:0.740~0.914),高于各单序列模型与双序列模型,但联合序列模型与Ax_DWI模型、Sag_T2W1模型及Ax_DWI+Sag_T2W1模型之间AUC差异无统计学意义(P=0.015~0.047).决策曲线显示联合序列模型的临床净效益高于单序列模型与各双序列模型.结论基于治疗前mpMRI影像组学特征构建的联合序列模型可有效预测LACC患者NACT后的LVSI状态.
Objective:To develop a model utilizing radiomic features from pre-treatment multiparametric magnetic resonance imaging (mpMRI) to predict lymphovascular space invasion (LVSI) status after neoadjuvant chemotherapy (NACT) in locally advanced cervical cancer (LACC). Materials and Methods:A retrospective analysis was conducted on clinical and imaging data of 300 patients with locally advanced cervical cancer (LACC) who underwent neoadjuvant chemotherapy (NACT) followed by radical hysterectomy. These patients were divided into a training set (187 patients,with 73 LVSI positive cases) from Henan Provincial People's Hospital and a validation set (113 patients,with 31 LVSI positive cases) from Henan Provincial Cancer Hospital. Tumor regions of interest (ROIs) were delineated on axial diffusion-weighted imaging (Ax_DWI),sagittal T2-weighted imaging (Sag_T2WI),and sagittal T1-weighted contrast-enhanced imaging (Sag_T1C),and features were extracted. Radiomic features were selected using recursive feature elimination (RFE) algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. Subsequently,single-sequence models,dual-sequence models,and combined model based on three-sequence radiomic features were established using logistic regression classifiers. The performance of each model was evaluated using receiver operating characteristic (ROC) curves,with area under the curve (AUC) compared using the Delong test. Clinical utility was assessed using decision curves. Results:In the validation set,the AUCs of the single-sequence models constructed based on Ax_DWI,Sag_T2WI,and Sag_T1C were 0.717[95% confidence interval (CI):0.605−0.829],0.734 (95% CI:0.633−0.836),and 0.733 (95% CI:0.626−0.841) respectively. The AUCs of the dual-sequence models constructed based on Ax_DWI+Sag_T2WI,Ax_DWI+Sag_T1C,and Sag_T2WI+Sag_T1C were 0.763 (95% CI:0.660−0.866),0.786 (95% CI:0.692−0.881),and 0.815 (95% CI:0.731−0.899) respectively. The AUC of the combined model was 0.829 (95% CI:0.740−0.914),which was higher than that of the single-sequence and dual-sequence models,however,the difference in AUC between the combined sequence model and the Ax_DWI model,Sag_T2WI model,as well as the Ax_DWI+Sag_T2WI model was not statistically significant (P=0.015−0.047). Decision curves showed that the clinical net benefit of the joint-sequence model was higher than that of the single-sequence and dual-sequence models. Conclusions:The combined model constructed based on pre-treatment multiparametric MRI radiomic features can effectively predict the LVSI status after NACT in LACC patients based on pre-treatment mpMRI.
董林逍;刘金金;张月洁;杨紫涵;吴青霞;王梅云
河南大学人民医院(河南省人民医院)放射科,郑州 450003郑州大学人民医院(河南省人民医院)放射科,郑州 450003河南大学人民医院(河南省人民医院)放射科,郑州 450003||郑州大学人民医院(河南省人民医院)放射科,郑州 450003河南大学人民医院(河南省人民医院)放射科,郑州 450003||郑州大学人民医院(河南省人民医院)放射科,郑州 450003||河南省科学院医工融合研究所,脑科学与类脑智能实验室,郑州 450003
临床医学
宫颈癌淋巴脉管间隙浸润磁共振成像影像组学新辅助化疗
cervical cancerlymphovascular space invasionmagnetic resonance imagingradiomicsneoadjuvant chemotherapy
《磁共振成像》 2024 (008)
25-30,45 / 7
国家自然科学基金项目(编号:82001783、82371934);国家重点研发计划重点专项(编号:2023YFC2414200)National Natural Science Foundation of China(No.82001783,82371934);Key Special Projects of the National Key Research and Development Program(No.2023YFC2414200).
评论