| 注册
首页|期刊导航|重庆大学学报|一种融合文本与知识图谱的问答系统模型

一种融合文本与知识图谱的问答系统模型

张佳豪 黄勃 王晨明 曾国辉 刘瑾

重庆大学学报2024,Vol.47Issue(8):55-64,10.
重庆大学学报2024,Vol.47Issue(8):55-64,10.DOI:10.11835/j.issn.1000.582X.2024.08.006

一种融合文本与知识图谱的问答系统模型

A question answering system model integrating text and knowledge graph

张佳豪 1黄勃 1王晨明 1曾国辉 1刘瑾1

作者信息

  • 1. 上海工程技术大学电子电气工程学院,上海 201620
  • 折叠

摘要

Abstract

Knowledge graph is one of the key technologies to realize question answering in open domain. Open domain question answering tasks often require enough knowledge information,and the incompleteness of knowledge graph becomes an important factor restricting the performance of question answering system. When combining external unstructured text with structured knowledge based on knowledge graphs to fill in missing information,the accuracy and efficiency of retrieving external texts are particularly critical,and selecting texts that are highly relevant to the problem can improve system performance. Conversely,selecting texts that are less relevant to the question will introduce knowledge noise,thereby reducing the accuracy of question answering tasks. Therefore,this paper designs a question answering system model that integrates text and knowledge graph,in which the text retriever can fully mine the semantic information of questions and texts to improve the quality of retrieval and the accuracy of query subgraphs. The knowledge mixer can combine knowledge from text and knowledge bases to build fusion representations of knowledge. The experimental results show that the proposed model has certain advantages in performance compared with the comparison models.

关键词

问答系统/知识图谱/外部知识/文本检索/融合表征

Key words

question answering system/knowledge graph/external knowledge/text retrieval/fusion representation

分类

信息技术与安全科学

引用本文复制引用

张佳豪,黄勃,王晨明,曾国辉,刘瑾..一种融合文本与知识图谱的问答系统模型[J].重庆大学学报,2024,47(8):55-64,10.

基金项目

科技创新2030"新一代人工智能"重大项目(2020AAA0109300) (2020AAA0109300)

国家自然科学基金青年项目(61802251).Supported by the Scientific and Technological Innovation 2030 Major Project of New Generation Artificial Intelligence(2020AAA0109300),and National Natural Science Foundation of China(61802251). (61802251)

重庆大学学报

OA北大核心CSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文