| 注册
首页|期刊导航|电池|基于弛豫电压模型的锂离子电池RUL预测

基于弛豫电压模型的锂离子电池RUL预测

翟健帆 李波 李永利 邓炜

电池2024,Vol.54Issue(4):542-547,6.
电池2024,Vol.54Issue(4):542-547,6.DOI:10.19535/j.1001-1579.2024.04.021

基于弛豫电压模型的锂离子电池RUL预测

RUL prediction of Li-ion battery based on relaxation voltage model

翟健帆 1李波 2李永利 2邓炜2

作者信息

  • 1. 中广核风电有限公司,北京 100071
  • 2. 北京市中保网盾科技有限公司,北京 102200
  • 折叠

摘要

Abstract

Li-ion battery exhibits a nonlinear degradation trend over long-term use.Predicting nonlinear degradation is crucial for extend battery life and ensure safety.A nonlinear degradation knee-point prediction method using relaxation voltage as a feature sequence is proposed,which enables joint prediction of knee-point and remaining useful life (RUL) .A framework for RUL prediction combining knee-point degradation features is established to improve prediction accuracy.The proposed joint prediction method is validated on different battery datasets using transfer learning,the mean absolute error for knee-point and RUL prediction is below 26 cycles,the root mean squared error is below 28 cycles.This method uses relaxation voltage to predict knee-point and RUL,thereby indirectly predicting the state of health (SOH) of battery,with advantages in prediction accuracy and broad applicability.

关键词

锂离子电池/剩余使用寿命(RUL)/拐点预测/弛豫电压/健康状态(SOH)

Key words

Li-ion battery/remaining useful life (RUL)/knee-point prediction/relaxation voltage/state of health (SOH)

分类

信息技术与安全科学

引用本文复制引用

翟健帆,李波,李永利,邓炜..基于弛豫电压模型的锂离子电池RUL预测[J].电池,2024,54(4):542-547,6.

基金项目

电化学储能电站安全健康监控关键技术研究与应用示范项目(020-GN-B-2022-c45-p.0.99-01625) (020-GN-B-2022-c45-p.0.99-01625)

电池

OA北大核心CSTPCD

1001-1579

访问量0
|
下载量0
段落导航相关论文