| 注册
首页|期刊导航|大地测量与地球动力学|基于LSTM与CNN融合的智能手机步态身份识别

基于LSTM与CNN融合的智能手机步态身份识别

王佳宇 王庆 孟晓林 许九靖 张凯

大地测量与地球动力学2024,Vol.44Issue(9):932-936,5.
大地测量与地球动力学2024,Vol.44Issue(9):932-936,5.DOI:10.14075/j.jgg.2023.12.566

基于LSTM与CNN融合的智能手机步态身份识别

Smartphone Gait Recognition Based on LSTM and CNN Fusion

王佳宇 1王庆 1孟晓林 1许九靖 1张凯1

作者信息

  • 1. 东南大学仪器科学与工程学院,南京市四牌楼2号,210096
  • 折叠

摘要

Abstract

We propose a gait recognition model that fuses long short-term memory(LSTM)and convo-lutional neural network(CNN),the model can automatically extract activity features and classify them using a small number of model parameters,and we utilize this model for user identification.The ex-perimental results show that the recognition accuracy of the model is about 97.68%and the loss value is about 0.05,which significantly improves the recognition rate compared to other models.

关键词

智能手机/LSTM/CNN/身份识别

Key words

smartphone/LSTM/CNN/gait recognition

分类

天文与地球科学

引用本文复制引用

王佳宇,王庆,孟晓林,许九靖,张凯..基于LSTM与CNN融合的智能手机步态身份识别[J].大地测量与地球动力学,2024,44(9):932-936,5.

基金项目

江苏省科技计划专项(BE2022820). Special Fund for Science and Technology of Jiangsu Province,No.BE2022820. (BE2022820)

大地测量与地球动力学

OA北大核心CSTPCD

1671-5942

访问量0
|
下载量0
段落导航相关论文