PCA优化CEEMD的DSQ水管倾斜仪信号随机噪声压制方法OA北大核心CSTPCD
A Random Noise Suppression Method for DSQ Water Tube Tiltmeter Signals Based on CEEMD and PCA
提出一种基于主成分分析(PCA)优化完备集合经验模态分解(CEEMD)的DSQ水管倾斜仪信号随机噪声压制方法CEEMD-PCA.该方法融合了相关系数、分布熵、MSE、R2、SSE、RMSE、MAE、MAPE等8个IMF分量质量评价指标,借助PCA实施指标值矩阵的降维压缩,将其转化为一个能代表全部不同类型指标特点的新参数,并构建IMF分量质量综合评价函数,根据分数排名结果完成原始含噪信号的线性重构.仿真信号和实测信号去噪实验结果皆表明,CEEMD-PCA模型优于卡尔曼滤波、70阶低通FIR滤波等经典模型,能提高原始信号的信噪比,精准完成信号重构,更好地保留有效成分.
We propose a random noise suppression method CEEMD-PCA based on principal component analy-sis(PCA)optimized complementary ensemble empirical mode decomposition(CEEMD)for DSQ water tube tiltmeter signal.The method incorporates eight IMF component quality evaluation indexes,such as correlation coefficient,distribution entropy,MSE,R2,SSE,RMSE,MAE,MAPE;it implements dimensionality re-duction and compression of the index value matrix with the help of principal component analysis to transform it into a new parameter that can represent the characteristics of all different types of indexes,and constructs a comprehensive IMF component quality evaluation function to complete the original noise-containing signal ac-cording to the score ranking results.We complete the linear reconstruction of the original noisy signal accord-ing to the score ranking results.The results of both simulated and measured signal denoising experiments show that the CEEMD-PCA model outperforms the classical models such as Kalman filter,70 th-order low-pass FIR filter,etc.,improves the signal-to-noise ratio of the original signal,and accurately completes the signal reconstruction,which can better retain the effective components.
郭晓菲;欧同庚;刘天龙
中国地震局地震大地测量重点实验室,武汉市洪山侧路40号,430071||武汉地震科学仪器研究院有限公司,湖北省咸宁市青龙路11号,437099辽宁省地震局,沈阳市黄河北大街44号,110031
地球科学
DSQ水管倾斜仪随机噪声压制完备集合经验模态分解主成分分析特征融合
DSQ water tube tiltmeterrandom noise suppressioncomplementary ensemble empirical mode decomposition(CEEMD)principal component analysis(PCA)indicator integration
《大地测量与地球动力学》 2024 (009)
978-984 / 7
湖北省自然科学基金(2019CFB768);中国地震局地震研究所和应急管理部国家自然灾害防治研究院基本科研业务费(2022HBJJ033). Natural Science Foundation of Hubei Province,No.2019CFB768;Scientific Research Fund of Institute of Seismology,CEA and National Institute of Natural Hazards,MEM,No.2022HBJJ033.
评论