|国家科技期刊平台
首页|期刊导航|电力科技与环保|基于NSGA-Ⅱ-VAR的燃煤电厂负荷预测

基于NSGA-Ⅱ-VAR的燃煤电厂负荷预测OA

Load forecasting for coal-fired power plants based on NSGA-Ⅱ-VAR

中文摘要英文摘要

燃煤电厂负荷预测的意义在于可以预先了解未来一段时间内的电力需求情况,从而合理安排发电设备的运行和停机维修时间,避免能源浪费、提高发电效率;此外,在燃煤电厂参与深度调峰、配煤掺烧的大背景下,为了确保混煤发热量适应负荷需求,提高燃烧效率,需要提前预知未来一段时间的负荷.本文提出一种基于快速非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)优化向量自回归模型(vector autoregression,VAR)的燃煤电厂负荷预测方法.该方法将历史过热蒸汽时间序列、历史再热蒸汽时间序列和历史发电量序列一起作为VAR模型的输入变量,预测未来8 h的发电负荷,同时使用NSGA-Ⅱ算法优化VAR模型的阶数和截距,从而提高了预测模型的精度.测试阶段,选取上海某机组2022年10月25日—2022年10月30日为数据样本区间,建立初始化预测模型;在2022年10月31日8:00—2022年11月1日16:00样本区间上测试模型效果,并使用NSGA-Ⅱ算法根据测试结果优化VAR模型;在2022年11月2日8:00—2022年11月3日16:00的样本区间上进一步测试优化后的模型预测精度.测试结果表明:预测均方根误差为15.341 MW,平均绝对误差为7.839 MW,和其他时序预测模型对比精度有所提高.该模型可实际运用于同类煤电机组的负荷预测,从而为后续运行决策提供参考.

The significance of load forecasting for coal-fired power plants lies in the fact that it is possible to know in advance the demand for electricity in the future period of time,so as to rationally arrange the operation and downtime of power generation equipment for maintenance,avoid energy waste,and improve the efficiency of power generation;moreover,in the context of coal-fired power plants participating in in-depth peaking and coal blending,it is necessary to predict in advance the future period of time in order to ensure that the coal blending heat generation capacity is adapted to the demand for loads and to improve the efficiency of combustion. In this paper,a load forecasting method for coal-fired power plants based on the fast Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) optimized Vector Autoregression (VAR) model is proposed. The method takes the historical superheated steam time series,the historical reheated steam time series,and the historical power generation series together as the input VARiables of the VAR model to predict the power generation load in the next 8 hours,and at the same time uses the NSGA-Ⅱ algorithm to optimize the order and intercept of the VAR model,thus improving the accuracy of the prediction model. In the testing stage,the data sample interval from October 25,2022 to October 30,2022 for a unit in Shanghai is selected to establish the initialized prediction model;the model effect is tested on the sample interval from 8:00 on October 31,2022 to 16:00 on November 1,2022,and the VAR model is optimized according to the test results using the NSGA-Ⅱ algorithm;and the VAR model is optimized on the sample interval from 8:00 on October 2,2022 to 16:00 on November 2,2022 using the NSGA-Ⅱ algorithm;the VAR model is optimized according to the test results in the test stage. The prediction accuracy of the optimized model is further tested on the sample interval from 8:00 on November 2,2022 to 16:00 on November 3,2022,using the NSGA-Ⅱ algorithm to optimize the VAR model based on the test results. The results show that the root-mean-square error of the prediction is 15.341 MW,and the average absolute error is 7.839 MW,which is improved compared with other time series prediction models. Therefore,the model can be practically applied to the load forecasting of similar coal power units,thus providing a reference for subsequent operation decisions.

韩伟伦;茅大钧;陈思勤

上海电力大学自动化工程学院,上海 200090华能国际电力股份有限公司上海石洞口第二电厂,上海 200942

能源与动力

燃煤电厂燃烧效率负荷预测NSGA-Ⅱ算法VAR模型

coal-fired power plantcombustion efficiencyload forecastingNSGA-Ⅱ algorithmVAR model

《电力科技与环保》 2024 (004)

371-379 / 9

国家自然科学基金项目(52005131);中国华能集团有限公司2022年度科技项目(HNKJ22-HF22)

10.19944/j.eptep.1674-8069.2024.04.005

评论