基于双尺度相似性和改进DBSCAN算法的低压配电台区相序识别方法OA北大核心CSTPCD
Phase Sequence Identification Method for Low-Voltage Distribution Stations Area Based on Dual-Scale Similarity and Improved DBSCAN Algorithm
针对低压配电台区智能电表采集的数据质量不高,且用户间电压相似度差异不明显导致相序识别结果较差的问题,提出一种基于双尺度相似性和改进的基于密度的噪声应用空间聚类(density-based spatial clustering of application with noise,DBSCAN)的低压配电台区相序识别方法.首先,考虑低压配电台区用户数据缺失的情况,提出基于矩阵补全的数据处理方法,以解决数据缺失对相序识别精度造成的不利影响;其次,提出了一种双尺度相似性度量方法,先采用欧氏距离来度量电压曲线的整体分布特征,再使用一阶差分和动态时间弯曲(dynamic time warping,DTW)距离来衡量电压曲线的局部动态特征,从整体与局部对DBSCAN的相似性度量方式进行改进,解决了传统度量方式在电压曲线相近时误判率高的问题;最后,采用麻雀搜索算法对DBSCAN的初始参数进行寻优选取,提升算法的鲁棒性.仿真实验表明,矩阵补全相对于传统插值补全在精度上提高了1.6~2.3倍,使用双尺度相似性与改进DBSCAN算法能够100%识别台区下所有用户的相序,使用麻雀搜索算法优化的领域半径(Eps)和密度阈值(MinPts)能够使DBSCAN获得最好的评价指标,解决了人工选取初始参数困难的问题.
To address the problem of low-quality smart meter collection data in low-voltage distribution station areas and poor phase identification results owing to inconspicuous differences in voltage similarity among users,a phase identification method based on dual-scale similarity and improved density-based spatial clustering of applications with noise (DBSCAN) for low-voltage distribution station areas is proposed. First,a data processing method based on matrix completion is proposed to address the negative impact of missing user data on the accuracy of phase sequence identification in low-voltage distribution station areas. Second,a dual-scale similarity metric is proposed,which first adopts the Euclidean distance to measure the overall distribution characteristics of voltage curves and subsequently uses the first-order difference and the dynamic time warping (DTW) distance to measure the local dynamic characteristics of the voltage curves,thereby improving the similarity measure of DBSCAN in the whole and local contexts and mitigating the issue of a high misjudgment rate when the voltage curves are close to each other inherent to the conventional method. Finally,the sparrow search algorithm (SSA) is used to identify the optimal initial DBSCAN parameters,which improves the robustness of the algorithm. Simulation experiments show that matrix complementation improves 1. 6 to 2. 3 times in accuracy relative to conventional interpolation complementation. Using dual-scale similarity with the improved DBSCAN algorithm,100% of the phase sequences of all the users in the station area can be identified. The application of the SSA to determine the optimal values for Eps and MinPts enables DBSCAN to obtain the best evaluation index and effectively addresses the impediments involved in selecting the initial parameters manually.
于惟坤;朱若源;陈旭;尚继伟;白星振;王慧
山东科技大学电气与自动化工程学院,山东省青岛市266590中国能源建设集团天津电力设计院有限公司,天津市300171
动力与电气工程
低压配电台区矩阵补全双尺度相似性麻雀搜索算法基于密度的噪声应用空间聚类(DBSCAN)相序识别
low-voltage distribution station areamatrix complementationdual-scale similaritysparrow search algorithmdensity-based spatial clustering of application with noise (DBSCAN)phase sequence identification
《电力建设》 2024 (009)
74-88 / 15
国家自然科学基金项目(52277118) This work is supported by National Natural Science Foundation of China(No.52277118).
评论