| 注册
首页|期刊导航|电力系统及其自动化学报|结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型

结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型

荆志宇 李培强 林文婷

电力系统及其自动化学报2024,Vol.36Issue(8):39-47,59,10.
电力系统及其自动化学报2024,Vol.36Issue(8):39-47,59,10.DOI:10.19635/j.cnki.csu-epsa.001373

结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型

Double-side Optimized Time-series Wind Power Prediction Model Combining Bayesian Optimization and Channel Attention

荆志宇 1李培强 2林文婷1

作者信息

  • 1. 福建理工大学电子电气与物理学院,福州 350118||福建理工大学智能电网仿真分析与综合控制福建省高校工程研究中心,福州 350118
  • 2. 湖南大学电气与信息工程学院,长沙 410082
  • 折叠

摘要

Abstract

Aimed at the problem of a lack of data-side parameter optimization and model-side structural optimization in the existing wind power time-series prediction model,a double-side optimized time-series wind power prediction model is proposed in this paper. First,Bayesian optimization is used to efficiently search and optimize the data-side parame-ters. Then,channel attention and convolutional neural network are used to construct a feature extraction module to en-hance the learning of the importance of input influencing factors by the model. Finally,the extracted features are accu-rately fitted using a bi-directional long short-term memory model. Results show that the proposed model can capture thechanging trend of wind power under different prediction scenarios and significantly improve the prediction accuracy.

关键词

时序式风功率预测/双端优化/贝叶斯优化/通道注意力

Key words

time-series wind power prediction/double-side optimization/Bayesian optimization/channel attention

分类

信息技术与安全科学

引用本文复制引用

荆志宇,李培强,林文婷..结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型[J].电力系统及其自动化学报,2024,36(8):39-47,59,10.

基金项目

国家自然科学基金资助项目(52377097) (52377097)

电力系统及其自动化学报

OA北大核心CSTPCD

1003-8930

访问量0
|
下载量0
段落导航相关论文