结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型OA北大核心CSTPCD
Double-side Optimized Time-series Wind Power Prediction Model Combining Bayesian Optimization and Channel Attention
针对现有风功率时序预测模型数据端缺少参数优化以及模型端缺少结构优化的问题,提出一种双端优化时序式风功率预测模型.首先,利用贝叶斯优化对数据端参数进行高效搜索寻优;然后,利用通道注意力和卷积神经网络构建特征提取模块,增强模型对输入影响因素重要性的学习;最后,利用双向长短期记忆模型对先前提取的特征进行精准拟合.研究结果表明,所提出模型在各预测场景下均能很好地把握风功率变化趋势,显著提升了预测精度.
Aimed at the problem of a lack of data-side parameter optimization and model-side structural optimization in the existing wind power time-series prediction model,a double-side optimized time-series wind power prediction model is proposed in this paper. First,Bayesian optimization is used to efficiently search and optimize the data-side parame-ters. Then,channel attention and convolutional neural network are used to construct a feature extraction module to en-hance the learning of the importance of input influencing factors by the model. Finally,the extracted features are accu-rately fitted using a bi-directional long short-term memory model. Results show that the proposed model can capture thechanging trend of wind power under different prediction scenarios and significantly improve the prediction accuracy.
荆志宇;李培强;林文婷
福建理工大学电子电气与物理学院,福州 350118||福建理工大学智能电网仿真分析与综合控制福建省高校工程研究中心,福州 350118湖南大学电气与信息工程学院,长沙 410082
动力与电气工程
时序式风功率预测双端优化贝叶斯优化通道注意力
time-series wind power predictiondouble-side optimizationBayesian optimizationchannel attention
《电力系统及其自动化学报》 2024 (008)
39-47,59 / 10
国家自然科学基金资助项目(52377097)
评论