基于A-MPC的MMC-HESS平抑光伏功率波动优化策略OA北大核心CSTPCD
Optimization Strategy of MMC-HESS Based on A-MPC to Stabilize Photovoltaic Power Fluctuation
为更好地解决光伏功率波动问题,提出一种光伏功率波动平抑及功率指令分配优化策略.首先,结合模块化多电平换流器-混合储能系统MMC-HESS(modular multilevel converter-hybrid energy storage system)提出自适应模型,预测控制实时平抑光伏功率波动,根据储能状态自适应调整目标函数;然后,提出霜冰算法优化的变分模态分解算法,双重分解储能总出力,完成MMC-HESS功率的初次分配;最后,通过充放电一致性优化、功率调整及模糊控制对功率分配指令进行双层优化.算例验证结果证明,所提策略能够有效平抑光伏功率波动,保护储能和优化HESS运行.
To better solve the problem of photovoltaic(PV)power fluctuation,a PV power fluctuation stabilization and power instruction allocation optimization strategy is proposed. First,combined with the modular multilevel converter-hy-brid energy storage system(MMC-HESS),adaptive model predictive control is put forward to stabilize the fluctuation of PV power in real time,and the objective function is adaptively adjusted according to the energy storage state. Then,a variational mode decomposition algorithm optimized by the rime algorithm is put forward to double decompose the to-tal output of energy storage and complete the initial allocation of MMC-HESS power. Finally,the power allocation in-struction is bi-level optimized by charging and discharging consistency optimization,power adjustment and fuzzy con-trol. The simulation results of an example show that the proposed strategy can effectively stabilize the PV power fluctua-tion,protect the energy storage and optimize the operation of HESS.
霍俊达;王毅;孟建辉
华北电力大学新能源电力系统全国重点实验室,保定 071003
动力与电气工程
模块化多电平换流器混合储能自适应模型预测控制霜冰算法优化的变分模态分解双层优化
modular multilevel converter(MMC)hybrid energy storageadaptive model predictive controlvariational mode decomposition optimized by rime algorithmbi-level optimization
《电力系统及其自动化学报》 2024 (008)
48-59 / 12
国家自然科学基金资助项目(52077079);国家电网公司科技项目(SGJBZN00AJJS2200052)
评论