| 注册
首页|期刊导航|电子器件|基于改进YOLOv4 网络的红外遥感小目标检测方法

基于改进YOLOv4 网络的红外遥感小目标检测方法

马玉磊 钟潇柔

电子器件2024,Vol.47Issue(4):1107-1115,9.
电子器件2024,Vol.47Issue(4):1107-1115,9.DOI:10.3969/j.issn.1005-9490.2024.04.036

基于改进YOLOv4 网络的红外遥感小目标检测方法

Infrared Remote Sensing Small Target Detection Method Based on Improved YOLOv4 Network

马玉磊 1钟潇柔2

作者信息

  • 1. 新乡学院继续教育学院,河南 新乡 453000
  • 2. 新乡学院计算机与信息工程学院,河南 新乡 453000
  • 折叠

摘要

Abstract

Targeting at the poor performance of traditional detection methods for infrared small target,a transferring learning and improved YOLOv4 network based infrared small target detection system is proposed.Firstly,the shallow features extracted by backbone of YOLOv4 network are enhanced,and the difficulty of infrared small target detection is reduced with combination of shallow features and deep features.Secondly,an attention mechanism is introduced to the detection head of YOLOv4 network to help the network focus on infra-red small targets of the feature maps,thus,the background interference to small target detection is reduced.Finally,the transferring learn-ing method is introduced to the training process of YOLOv4 network to solve the problem of lack of labeled training data for infrared small target detection.Experimental results based on public infrared small target detection dataset show that the proposed system improves the detection performance of YOLOv4 network for infrared small target,it also outperforms the other compared detection models.

关键词

深度学习/红外遥感/目标检测/迁移学习/深度神经网络/单阶段检测模型

Key words

deep learning/infrared remote sensing/target detection/transferring learning/deep neural network/one stage detection model

分类

信息技术与安全科学

引用本文复制引用

马玉磊,钟潇柔..基于改进YOLOv4 网络的红外遥感小目标检测方法[J].电子器件,2024,47(4):1107-1115,9.

基金项目

河南省科技厅重点研发与推广专项(科技攻关)项目(212102210405) (科技攻关)

2022年度新乡学院教育教学改革研究与实践项目成果(31) (31)

电子器件

OACSTPCD

1005-9490

访问量0
|
下载量0
段落导航相关论文