| 注册
首页|期刊导航|自然资源遥感|基于深度特征的多方向目标检测研究

基于深度特征的多方向目标检测研究

于淼 荆虹波 王翔 李兴久

自然资源遥感2024,Vol.36Issue(3):267-271,5.
自然资源遥感2024,Vol.36Issue(3):267-271,5.DOI:10.6046/zrzyyg.2023139

基于深度特征的多方向目标检测研究

Multi-directional target detection based on depth features

于淼 1荆虹波 1王翔 2李兴久1

作者信息

  • 1. 北京城建勘测设计研究院有限责任公司,北京 100101
  • 2. 新兴华安智慧科技有限公司,北京 100160
  • 折叠

摘要

Abstract

In recent years,target detection,as an important branch of computer vision technology,has been widely applied in fields such as medicine,military affairs,and urban rail transit.As satellite and remote sensing technologies advance,images obtained using these technologies contain abundant information.This makes it crucial to conduct automatic target detection and understanding of these images.However,due to the random directions and dense distribution of targets in remote sensing images,conventional methods are prone to lead to missing or incorrect detection.In response,this study proposes a multi-convolution kernel feature combination-based adaptive region proposal network(MFCARPN)algorithm for multi-directional detection.This algorithm introduces multiple convolution kernel features for target extraction.The weight parameters of these convolution kernel features can be determined through adaptive learning according to the differences between the targets,yielding the characteristic patterns that match better with targets.Meanwhile,in combination with the original features of the targets,the parameters of the classification and regression model vary dynamically according to the difference between targets.Thus,the RPN's adaptive ability can be improved.The experimental results indicate that the mAP of the standard dataset DOTA reached up to 75.52%,which is 0.5 percentages higher than that of the baseline algorithm GV.Therefore,the MFCARPN algorithm proposed in this study proves effective.

关键词

遥感影像/自适应/MFCARPN/多方向检测

Key words

remote sensing image/adaptive ability/MFCARPN/multi-directional detection

分类

信息技术与安全科学

引用本文复制引用

于淼,荆虹波,王翔,李兴久..基于深度特征的多方向目标检测研究[J].自然资源遥感,2024,36(3):267-271,5.

自然资源遥感

OA北大核心CSTPCD

2097-034X

访问量0
|
下载量0
段落导航相关论文