| 注册
首页|期刊导航|化工进展|基于ECT模型修正及算法优化的超音速分离流场图像重建

基于ECT模型修正及算法优化的超音速分离流场图像重建

王世伟 王超 郭琪 丁红兵

化工进展2024,Vol.43Issue(8):4222-4229,8.
化工进展2024,Vol.43Issue(8):4222-4229,8.DOI:10.16085/j.issn.1000-6613.2024-0466

基于ECT模型修正及算法优化的超音速分离流场图像重建

Image reconstruction of flow field for supersonic separator based on model modification and algorithm optimization of ECT

王世伟 1王超 2郭琪 3丁红兵2

作者信息

  • 1. 天津大学电气自动化与信息工程学院,天津 300072||淮南师范学院机械与电气工程学院,安徽 淮南 232038
  • 2. 天津大学电气自动化与信息工程学院,天津 300072
  • 3. 天津市特种设备监督检验技术研究院,国家市场监管重点实验室(特种设备数字孪生共性技术),天津 300192
  • 折叠

摘要

Abstract

Precision measurement of flow field parameters in a supersonic separator is essential for optimizing its structure and performance.Electrical capacitance tomography(ECT)offers a non-invasive approach to accurately measure these parameters.The mathematical model for solving the inverse problem of ECT is mainly obtained by linearization approximation,which ignores the influence of nonlinearity and"soft field"effect on the image reconstruction.As a result,the image reconstruction is of poor quality when the dielectric constants of the media in the field differ significantly.Aiming at the problem,the mathematical model of the ECT inverse problem was modified by introducing the model derivation error.Then,based on the separable property of the objective function,a solution algorithm combining regularization and Split Bregman(RASB)was designed to solve the model error and the media to be reconstructed by cross iteration.The image reconstruction results of the RASB algorithm,Tikhonov regularization algorithm,L1 regularization algorithm and Landweber algorithm for several models using simulation and experimental data showed that the proposed method could reduce the error generated by the linearization approximation,and weaken the effect of noise on the image reconstruction.The RASB algorithm could reconstruct more accurate media distribution with fewer artifacts in the image,and the average correlation coefficient of the reconstructed images was 0.8964,which was higher than that of the Tikhonov regularization algorithm(0.8353),the L1 regularization algorithm(0.8496),and the Landweber algorithm(0.8681).

关键词

超音速分离器/电容层析成像/模型推导误差/正则化与Split Bregman/交叉迭代

Key words

supersonic separator/electrical capacitance tomography/model derivation errors/regularization and Split Bregman/cross iteration

分类

信息技术与安全科学

引用本文复制引用

王世伟,王超,郭琪,丁红兵..基于ECT模型修正及算法优化的超音速分离流场图像重建[J].化工进展,2024,43(8):4222-4229,8.

基金项目

安徽省科研编制计划(2023AH051556) (2023AH051556)

国家自然科学基金(52276159,51876143). (52276159,51876143)

化工进展

OA北大核心CSTPCD

1000-6613

访问量0
|
下载量0
段落导航相关论文