基于轨迹图片特征距离的船舶轨迹聚类OACSTPCD
Ship Trajectory Clustering Based on Image Feature Distance
为了进一步优化海上交通管理,针对基于多维属性的船舶轨迹聚类算法难以设置权重参数、运行时间长的问题,提出了一种基于轨迹图片特征距离的船舶轨迹聚类算法.该算法利用船舶自动识别系统(AIS)数据,根据轨迹点的位置、航速和航向绘制轨迹图片,通过深度残差网络提取轨迹图片特征,采用主成分分析技术降低特征维度,基于欧式距离实现轨迹间的距离度量,并通过基于密度的含噪数据空间聚类算法(DBSCAN)对降维后的船舶轨迹图片特征聚类.实验结果表明,论文所提算法能够在降低运行时间的情况下,对实验水域轨迹进行有效聚类,反映的船舶交通流特征符合实际情况.
In order to further optimize the management of maritime traffic,a ship trajectory clustering algorithm based on dis-tance metrics of trajectory image features is proposed.This algorithm aims to address the problems of difficult setting of weight pa-rameters and long running time for traditional ship trajectory clustering algorithms based on multiple dimensional attributes.The al-gorithm utilizes Automatic Identification System(AIS)data to draw trajectory images based on the position,speed,and course of trajectory points.The trajectory image features are extracted via a deep residual network trained on large-scale image data.The fea-ture dimensionality is reduced via principal component analysis.The distance measure between trajectories is based on the Euclide-an distance of feature vectors.The density-based noise-tolerant clustering algorithm(DBSCAN)is employed to cluster the reduced ship trajectory image features.Experiment results show that the proposed algorithm can effectively cluster the trajectories while re-ducing the running time.The characteristics of the ship traffic flow reflected by the trajectory clusters are consistent with the actual situation.
史祺;范亚琼;张丹普;杨剑锋
中国航天科工集团第二研究院 北京 100039||北京航天长峰科技工业集团有限公司 北京 100039北京航天长峰科技工业集团有限公司 北京 100039
计算机与自动化
船舶轨迹聚类船舶轨迹距离度量DBSCAN船舶交通流特征
ship trajectory clusteringship trajectory distance measureDBSCANcharacteristics of the ship traffic flow
《舰船电子工程》 2024 (006)
30-35 / 6
国家重点研发计划(编号:2020YFC0833406)资助.
评论