| 注册
首页|期刊导航|电力系统保护与控制|基于剩余寿命预测信息的风电场动态成组维护策略研究

基于剩余寿命预测信息的风电场动态成组维护策略研究

黄玲玲 马永杰 应飞祥 王全德 刘璐洁

电力系统保护与控制2024,Vol.52Issue(16):178-187,10.
电力系统保护与控制2024,Vol.52Issue(16):178-187,10.DOI:10.19783/j.cnki.pspc.231397

基于剩余寿命预测信息的风电场动态成组维护策略研究

Dynamic group maintenance strategy for a wind farm based on residual life prediction information

黄玲玲 1马永杰 2应飞祥 2王全德 2刘璐洁1

作者信息

  • 1. 海上风电技术教育部工程研究中心(上海电力大学),上海 200090
  • 2. 上海电力大学电气工程学院,上海 200090
  • 折叠

摘要

Abstract

There is a problem that the dynamic change of real-time condition information of the components in a maintenance time window is rarely considered in existing research on wind farm group maintenance optimization.Thus this paper proposes a wind farm group maintenance strategy that considers the dynamic update of the remaining life prediction information.First,the residual life prediction results of each component are obtained using real-time condition information.Based on these results,the minimum average maintenance cost is optimized,and the optimal maintenance time window of single component is constructed.Secondly,considering the structural correlation of wind turbine components and the inventory constraints of spare parts,a group maintenance model of the wind farm is established to save the maximum maintenance cost,and a genetic algorithm is used to optimize the group maintenance strategy.Finally,a rolling time window model is used to update the remaining life prediction information of wind turbine components in real time and dynamically adjust the original maintenance plan.The analysis of an actual wind farm case shows that the proposed strategy can update the wind farm maintenance plan in real time,realize the dynamic optimization of the maintenance plan,and help to reduce the maintenance cost.

关键词

风电场/剩余寿命预测/相关性/动态成组维护/遗传算法

Key words

wind farm/residual life prediction/correlation/dynamic group maintenance/genetic algorithm

引用本文复制引用

黄玲玲,马永杰,应飞祥,王全德,刘璐洁..基于剩余寿命预测信息的风电场动态成组维护策略研究[J].电力系统保护与控制,2024,52(16):178-187,10.

基金项目

This work is supported by the National Natural Science Foundation of China(No.52177097). 国家自然科学基金项目资助(52177097) (No.52177097)

电力系统保护与控制

OA北大核心CSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文