| 注册
首页|期刊导航|计算机工程与科学|边缘侧神经网络块粒度领域自适应技术研究

边缘侧神经网络块粒度领域自适应技术研究

辛高枫 刘玉潇 张青龙 韩锐 刘驰

计算机工程与科学2024,Vol.46Issue(8):1361-1371,11.
计算机工程与科学2024,Vol.46Issue(8):1361-1371,11.DOI:10.3969/j.issn.1007-130X.2024.08.004

边缘侧神经网络块粒度领域自适应技术研究

Block-grained domain adaptation for neural networks at edge

辛高枫 1刘玉潇 1张青龙 1韩锐 1刘驰1

作者信息

  • 1. 北京理工大学计算机学院,北京 100081
  • 折叠

摘要

Abstract

Running deep neural networks on edge devices faces two challenges:model scaling and do-main adaptation.Existing model scaling techniques and unsupervised online domain adaptation tech-niques suffer from coarse scaling granularity,limited scaling space,and long online domain adaptation time.To address these two challenges,this paper proposes a block-grained model scaling and domain adaptation training method called EdgeScaler,which consists of offline and online phases.For the model scaling challenge,in the offline phase,blocks are detected and extracted from various DNN and then are converted into multiple derived blocks.In the online phase,based on the combination of blocks and the connections between them,a large-scale scaling space is provided to solve the model scaling problem.For the domain adaptation challenge,a block-specific residual Adapter is designed,which is inserted into the blocks in the offline phase.In the online phase,when a new target domain arrives,all adapters are trained to solve the domain adaptation problem for all options in the block-grained scaling space.Test results on the real edge device,Jetson TX2,show that EdgeScaler can reduce the domain adaptation training time by an average of 85.14%and reduce the training energy consumption by an average of 84.1%,while providing a large-scale scaling option.

关键词

深度神经网络/边缘设备/弹性缩放//域自适应

Key words

deep neural network/edge device/elastic scaling/block/domain adaptation

分类

信息技术与安全科学

引用本文复制引用

辛高枫,刘玉潇,张青龙,韩锐,刘驰..边缘侧神经网络块粒度领域自适应技术研究[J].计算机工程与科学,2024,46(8):1361-1371,11.

基金项目

国家重点研发计划(2021YFB3301500) (2021YFB3301500)

国家自然科学基金(62272046,62132019,61872337) (62272046,62132019,61872337)

计算机工程与科学

OA北大核心CSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文