| 注册
首页|期刊导航|计算机工程与科学|多阶段特征蒸馏加权的轻量级图像超分辨率网络

多阶段特征蒸馏加权的轻量级图像超分辨率网络

杨胜荣 车文刚 高盛祥 赵云莱

计算机工程与科学2024,Vol.46Issue(8):1433-1443,11.
计算机工程与科学2024,Vol.46Issue(8):1433-1443,11.DOI:10.3969/j.issn.1007-130X.2024.08.012

多阶段特征蒸馏加权的轻量级图像超分辨率网络

A multi-stage feature distillation-weighted lightweight image super-resolution network

杨胜荣 1车文刚 1高盛祥 1赵云莱1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院,云南 昆明 650504
  • 折叠

摘要

Abstract

To address the issues of insufficient receptive fields for extracting low-level features and the lack of reinforcement for local key features in lightweight networks,this paper proposed a multi-stage feature distillation-weighted lightweight image super-resolution network LMSWN.Firstly,a pyr-amid-like module is employed to expand the receptive field during shallow feature extraction,integrate feature information of different scales,and enrich the information flow of the network.Secondly,a multi-stage residual distillation-weighted module is designed to enhance the ability of square convolution to extract local key features,recover more detailed information,and improve reconstruction perform-ance.At the same time,the combination of channel separation and 1 × 1 convolution realizes gradual distillation of features,reducing the number of network parameters.Finally,two adaptive parameters are introduced to jointly learn the features of the two branches of the multi-stage residual distillation-weighted module,enhancing the attention to different levels of feature information and further enhan-cing the representation ability of the network.Experimental results show that the proposed network is fully validated on five benchmark datasets:Set 5,Set 14,BSDS 100,Urban 100,and Manga 109,and its performance exceeds the current mainstream lightweight network.

关键词

图像超分辨率/轻量级/特征蒸馏/多尺度卷积

Key words

image super-resolution/lightweight/feature distillation/multi-scale convolution

分类

信息技术与安全科学

引用本文复制引用

杨胜荣,车文刚,高盛祥,赵云莱..多阶段特征蒸馏加权的轻量级图像超分辨率网络[J].计算机工程与科学,2024,46(8):1433-1443,11.

基金项目

国家自然科学基金(61972186,U21B2027) (61972186,U21B2027)

计算机工程与科学

OA北大核心CSTPCD

1007-130X

访问量2
|
下载量0
段落导航相关论文