| 注册
首页|期刊导航|计算机工程与科学|一种基于多特征融合嵌入的中文命名实体识别模型研究

一种基于多特征融合嵌入的中文命名实体识别模型研究

刘晓华 徐茹枝 杨成月

计算机工程与科学2024,Vol.46Issue(8):1473-1481,9.
计算机工程与科学2024,Vol.46Issue(8):1473-1481,9.DOI:10.3969/j.issn.1007-130X.2024.08.016

一种基于多特征融合嵌入的中文命名实体识别模型研究

A Chinese named entity recognition model based on multi-feature fusion embedding

刘晓华 1徐茹枝 1杨成月2

作者信息

  • 1. 华北电力大学控制与计算机工程学院,北京 102206
  • 2. 国家电网有限公司大数据中心,北京 100052
  • 折叠

摘要

Abstract

In order to solve the problems of differences in Chinese glyphs and blurred boundaries of Chinese words,a Chinese named entity recognition model based on multi-feature fusion embedding is proposed.On the basis of extracting semantic features,glyph features are captured based on convolu-tional neural network and multi-headed self-attention mechanism,word features are obtained with refer-ence to the word vector embedding table,and the bidirectional long short-term memory neural network is used to learn the context representation of long distance.Finally the constraint conditions in sentence sequence labels are learned by combining the conditional random field to realize Chinese named entity recognition.The Fl values on the Resume,Weibo and People Daily datasets reach 96.66%,70.84%and 96.15%,respectively,which proves that the proposed model effectively improves the performance of Chinese named entity recognition tasks.

关键词

命名实体识别/特征融合/多头自注意力机制

Key words

named entity recognition/feature fusion/multi-headed self-attention mechanism

分类

信息技术与安全科学

引用本文复制引用

刘晓华,徐茹枝,杨成月..一种基于多特征融合嵌入的中文命名实体识别模型研究[J].计算机工程与科学,2024,46(8):1473-1481,9.

基金项目

国家自然科学基金(61972148) (61972148)

计算机工程与科学

OA北大核心CSTPCD

1007-130X

访问量5
|
下载量0
段落导航相关论文