| 注册
首页|期刊导航|计算机工程与应用|视觉大模型SAM在医学图像分割中的应用综述

视觉大模型SAM在医学图像分割中的应用综述

孙兴 蔡肖红 李明 张帅 马金刚

计算机工程与应用2024,Vol.60Issue(17):1-16,16.
计算机工程与应用2024,Vol.60Issue(17):1-16,16.DOI:10.3778/j.issn.1002-8331.2401-0136

视觉大模型SAM在医学图像分割中的应用综述

Review of Application of Visual Foundation Model SAM in Medical Image Segmentation

孙兴 1蔡肖红 1李明 1张帅 1马金刚1

作者信息

  • 1. 山东中医药大学 智能与信息工程学院,济南 250355
  • 折叠

摘要

Abstract

With the continuous development of foundation models technology,visual foundation model represented by the segment anything model(SAM)has made significant breakthroughs in the field of image segmentation.SAM,driven by prompts,accomplishes a series of downstream segmentation tasks,aiming to address all image segmentation issues comprehensively.Therefore,the application of SAM in medical image segmentation is of great significance,as its genera-lization performance can adapt to various medical images,providing healthcare professionals with a more comprehensive understanding of anatomical structures and pathological information.This paper introduces commonly used datasets for image segmentation,provides detailed explanations of SAM's network architecture and generalization capabilities.It focuses on a thorough analysis of SAM's application in five major categories of medical images:whole-slide imaging,magnetic resonance imaging,computed tomography,ultrasound,and multimodal images.The review summarizes the strengths and weaknesses of SAM,along with corresponding improvement methods.Combining current challenges in the field of medical image segmentation,the paper discusses and anticipates future directions for SAM's development.

关键词

视觉大模型/分割一切模型(SAM)/医学图像/图像分割

Key words

visual foundation model/segment anything model(SAM)/medical images/image segmentation

分类

信息技术与安全科学

引用本文复制引用

孙兴,蔡肖红,李明,张帅,马金刚..视觉大模型SAM在医学图像分割中的应用综述[J].计算机工程与应用,2024,60(17):1-16,16.

基金项目

国家自然科学基金(81973981,82074579) (81973981,82074579)

2022年山东省研究生优质教育教学资源项目(SDYAL2022041). (SDYAL2022041)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文