| 注册
首页|期刊导航|计算机工程与应用|大语言模型微调技术的研究综述

大语言模型微调技术的研究综述

张钦彤 王昱超 王鹤羲 王俊鑫 陈海

计算机工程与应用2024,Vol.60Issue(17):17-33,17.
计算机工程与应用2024,Vol.60Issue(17):17-33,17.DOI:10.3778/j.issn.1002-8331.2312-0035

大语言模型微调技术的研究综述

Comprehensive Review of Large Language Model Fine-Tuning

张钦彤 1王昱超 1王鹤羲 1王俊鑫 1陈海1

作者信息

  • 1. 北京师范大学珠海校区 文理学院,广东 珠海 519087
  • 折叠

摘要

Abstract

The rise of large-scale language models signifies a new milestone in the field of deep learning,with fine-tuning techniques playing a crucial role in optimizing model performance.This paper provides a comprehensive overview of fine-tuning techniques for large-scale language models.It reviews the development stages of language models,including statis-tical language models,neural network language models,pre-trained language models,and large language models.The basic concepts of fine-tuning are explored,covering classic fine-tuning,efficient parameter fine-tuning,prompt tuning,and reinforcement learning fine-tuning.The paper delves into the principles and development of each fine-tuning tech-nique,offering a comparative analysis across these four major categories.In conclusion,the paper summarizes the current state of research on fine-tuning techniques and underscores the potential research value in this domain,providing insights into future directions of development.

关键词

大语言模型/微调方法/预训练模型/自然语言处理

Key words

large language model/fine-tuning methods/pre-trained models/natural language processing

分类

信息技术与安全科学

引用本文复制引用

张钦彤,王昱超,王鹤羲,王俊鑫,陈海..大语言模型微调技术的研究综述[J].计算机工程与应用,2024,60(17):17-33,17.

基金项目

广东省教育科学规划课题(2022GXJK47) (2022GXJK47)

认知智能全国重点实验室智能教育开放课题(iED2023-005). (iED2023-005)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文