| 注册
首页|期刊导航|计算机工程与应用|多尺度特征融合的双模态目标检测方法

多尺度特征融合的双模态目标检测方法

张睿 李允臣 王家宝 陈瑶 王梓祺 李阳

计算机工程与应用2024,Vol.60Issue(17):233-242,10.
计算机工程与应用2024,Vol.60Issue(17):233-242,10.DOI:10.3778/j.issn.1002-8331.2305-0412

多尺度特征融合的双模态目标检测方法

Multiscale Feature Fusion Approach for Dual-Modal Object Detection

张睿 1李允臣 1王家宝 1陈瑶 1王梓祺 1李阳1

作者信息

  • 1. 陆军工程大学 指挥控制工程学院,南京 210007
  • 折叠

摘要

Abstract

Object detection based on visible images is difficult to adapt to complex lighting conditions such as low light,no light,strong light,etc.,while object detection based on infrared images is greatly affected by background noise.Infra-red objects lack color information and have weak texture features,which pose a greater challenge.To address these prob-lems,a dual-modal object detection approach that can effectively fuse the features of visible and infrared dual-modal images is proposed.A multiscale feature attention module is proposed,which can extract the multiscale features of the input IR and RGB images separately.Meanwhile,channel attention and spatial pixel attention is introduced to focus the multiscale feature information of dual-modal images from both channel and pixel dimensions.Finally,a dual-modal feature fusion module is proposed to adaptively fuse the feature information of dual-modal images.On the large-scale dual-modal image dataset DroneVehicle,compared with the benchmark algorithm YOLOv5s using visible or infrared single-modal image detection,the proposed algorithm improves the detection accuracy by 13.42 and 2.27 percentage points,and the detec-tion speed reaches 164 frame/s,with ultra-real-time end-to-end detection capability.The proposed algorithm effectively improves the robustness and accuracy of object detection in complex scenes,which has good application prospects.

关键词

目标检测/多尺度特征融合/双模态/注意力机制

Key words

object detection/multiscale features fusion/dual-modal image/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

张睿,李允臣,王家宝,陈瑶,王梓祺,李阳..多尺度特征融合的双模态目标检测方法[J].计算机工程与应用,2024,60(17):233-242,10.

基金项目

江苏省自然科学基金(BK20200581). (BK20200581)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文