| 注册
首页|期刊导航|计算机工程与应用|融合关系图注意力网络的并行查询执行计划选择

融合关系图注意力网络的并行查询执行计划选择

郭梦涛 牛保宁 杨茸

计算机工程与应用2024,Vol.60Issue(17):243-251,9.
计算机工程与应用2024,Vol.60Issue(17):243-251,9.DOI:10.3778/j.issn.1002-8331.2308-0347

融合关系图注意力网络的并行查询执行计划选择

Parallel Query Execution Plan Selection for Fused Relational Graph Attention Networks

郭梦涛 1牛保宁 1杨茸1

作者信息

  • 1. 太原理工大学 计算机科学与技术学院(大数据学院),山西 晋中 030600
  • 折叠

摘要

Abstract

As one of the most important functions in database systems,the execution efficiency of queries directly deter-mines the performance of the system.In parallel scenarios,query interaction(QI)essentially represents the interaction between operations,which is the key to accurately selecting a query execution plan.Existing models that measure QI at the operational granularity fail to describe the dynamics of interactions and only extract operational features to reflect QI,making it difficult to provide accurate QI measures for selecting execution plans in parallel scenarios.To this end,for the representation of QI,a query mix heterogeneous graph is proposed,with each operation as a node and each interaction type between two operations as an edge,to achieve a dynamic,operationally granular,and multi-interaction type represen-tation of QI;for the feature extraction of QI,the multi-edge type weight calculation(MTWC)model is proposed to calcu-late the edge weight,which is used as the relationship feature to reflect the strength of interactions;for the selection of execution plans,query-mix heterogeneous graph classification(QHGC)model based on relational graph attention net-work(R-GAT)is proposed to select an execution plan for parallel queries.Experiments on PostgreSQL show that QHGC selects execution plans for queries with an accuracy of 90.4%,an average accuracy improvement of 48.2 percentage points over the query optimizer and 6.9 percentage points over the existing state-of-the-art model PSG.

关键词

查询交互/操作级/多边类型权重计算(MTWC)/执行计划/关系图注意力网络(R-GAT)

Key words

query interaction/operation level/multi-edge type weight calculation(MTWC)/execution plan/relational graph attention network(R-GAT)

分类

信息技术与安全科学

引用本文复制引用

郭梦涛,牛保宁,杨茸..融合关系图注意力网络的并行查询执行计划选择[J].计算机工程与应用,2024,60(17):243-251,9.

基金项目

国家自然科学基金(62072326,61572345) (62072326,61572345)

山西省基础研究计划项目(202203021212282). (202203021212282)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文