| 注册
首页|期刊导航|计算机工程与应用|RF-MIP-LSTM股价预测模型

RF-MIP-LSTM股价预测模型

张颖 李路

计算机工程与应用2024,Vol.60Issue(17):272-281,10.
计算机工程与应用2024,Vol.60Issue(17):272-281,10.DOI:10.3778/j.issn.1002-8331.2312-0329

RF-MIP-LSTM股价预测模型

RF-MIP-LSTM Stock Price Prediction Model

张颖 1李路1

作者信息

  • 1. 上海工程技术大学 数理与统计学院,上海 201620
  • 折叠

摘要

Abstract

Long short-term memory(LSTM)neural networks have demonstrated superior performance in predicting com-plex nonlinear systems such as stock price fluctuations.However,the traditional LSTM models do not take into account the coupling relationships among the three gating mechanisms and the impact of long-term memory on the model's input.This paper enhances the transmission of long-term memory peeking information and the stability of the model by incorpo-rating long-term memory into the input gate and coupling the three gating mechanisms into a unique gate mechanism.It constructs an LSTM model based on feature selection with random forest(RF-MIP-LSTM)and derives the forward and backward propagation algorithms for the model.Through predictions and comparisons on stock prices of Agricultural Bank of China,Yantian Port,Gree Electric Appliances,and the Shanghai Stock Exchange Index,the RF-MIP-LSTM model exhibits superior convergence speed and predictive accuracy compared to the traditional LSTM model.

关键词

股价预测/随机森林(RF)/长短时记忆(LSTM)神经网络/长时窥视孔

Key words

stock price prediction/random forest(RF)/long short-term memory(LSTM)neural network/long peephole

分类

信息技术与安全科学

引用本文复制引用

张颖,李路..RF-MIP-LSTM股价预测模型[J].计算机工程与应用,2024,60(17):272-281,10.

基金项目

国家自然科学基金(62173222). (62173222)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文