| 注册
首页|期刊导航|计算机科学与探索|AIGC大模型测评综述:使能技术、安全隐患和应对

AIGC大模型测评综述:使能技术、安全隐患和应对

许志伟 李海龙 李博 李涛 王嘉泰 谢学说 董泽辉

计算机科学与探索2024,Vol.18Issue(9):2293-2325,33.
计算机科学与探索2024,Vol.18Issue(9):2293-2325,33.DOI:10.3778/j.issn.1673-9418.2402023

AIGC大模型测评综述:使能技术、安全隐患和应对

Survey of AIGC Large Model Evaluation:Enabling Technologies,Vulnerabilities and Mitigation

许志伟 1李海龙 2李博 2李涛 3王嘉泰 4谢学说 5董泽辉5

作者信息

  • 1. 先进计算与关键软件(信创)海河实验室,天津 300350||中国科学院 计算技术研究所,北京 100080
  • 2. 中国科学院 计算技术研究所,北京 100080||内蒙古工业大学 数据科学与应用学院,呼和浩特 010080
  • 3. 先进计算与关键软件(信创)海河实验室,天津 300350||南开大学 计算机学院,天津 300350
  • 4. OPPO研究院,北京 100026
  • 5. 先进计算与关键软件(信创)海河实验室,天津 300350
  • 折叠

摘要

Abstract

Artificial intelligence generated content(AIGC)models have attracted widespread attention and applica-tion worldwide due to their excellent content generation capabilities.However,the rapid development of AIGC large models also brings a series of hidden dangers,such as concerns about interpretability,fairness,security,and privacy preservation of model-generated content.In order to reduce the unknowable risks and their harms,it be-comes more and more important to carry out a comprehensive measurement and evaluation of AIGC large models.Academics have initiated AIGC large model evaluation studies aiming to effectively address the related challenges and avoid potential risks.This paper summarizes and analyzes the AIGC large model evaluation studies.Firstly,an overview of the model evaluation process is provided,covering model evaluation pre-preparation and corresponding measurement indicators,and existing measurement benchmarks are systematically organized.Secondly,the repre-sentative applications of the AIGC large model in finance,politics and healthcare and their problems are discussed.Then,the measurement methods are studied in depth through different perspectives,such as interpretability,fair-ness,robustness,security and privacy,and the new issues that need to be paid attention to AIGC large model evaluation are deconstructed,and the ways to cope with the new challenges of large model evaluation are pro-posed.Finally,the future challenges of AIGC large model evaluation are discussed,and its future development direc-tion is envisioned.

关键词

AIGC大模型/大模型测评/可解释性/公平性/鲁棒性/安全与隐私保护

Key words

AIGC large model/large model evaluation/interpretability/fairness/robustness/security and privacy protection

分类

信息技术与安全科学

引用本文复制引用

许志伟,李海龙,李博,李涛,王嘉泰,谢学说,董泽辉..AIGC大模型测评综述:使能技术、安全隐患和应对[J].计算机科学与探索,2024,18(9):2293-2325,33.

基金项目

国家自然科学基金地区项目(61962045,62272248) (61962045,62272248)

内蒙古青年科技英才支持项目(NJYT23104). This work was supported by the National Natural Science Foundation of China(61962045,62272248),and the Inner Mongolia Support Plan for Young Science and Technology Talents(NJYT23104). (NJYT23104)

计算机科学与探索

OA北大核心CSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文