| 注册
首页|期刊导航|计算机与数字工程|基于高斯-柯西混合变异的多目标粒子群算法

基于高斯-柯西混合变异的多目标粒子群算法

舒一鸣 戴毅茹

计算机与数字工程2024,Vol.52Issue(6):1593-1597,1603,6.
计算机与数字工程2024,Vol.52Issue(6):1593-1597,1603,6.DOI:10.3969/j.issn.1672-9722.2024.06.001

基于高斯-柯西混合变异的多目标粒子群算法

Multi-objective Particle Swarm Optimization Algorithm Based on Gaussian-Cauchy Mixture Mutation

舒一鸣 1戴毅茹1

作者信息

  • 1. 同济大学CIMS研究中心 上海 201804
  • 折叠

摘要

Abstract

Aiming at the defects of poor convergence performance,insufficient global search ability and easy to fall into local optimization in MOPSO optimization algorithm for solving complex multi-objective optimization problems,a multi-objective parti-cle swarm optimization algorithm based on Gaussian-Cauchy mixed mutation(GC-MOPSO)is proposed.The algorithm uses a muta-tion disturbance mechanism of mixed Gaussian mutation and Cauchy mutation to improve the local and global search ability of parti-cles,and uses the tournament selection mechanism to select the global optimal individual in the external file to increase the diversi-ty of the population.The advantages of the algorithm are verified by comparing with six other algorithms in anti-generation distance(IGD).

关键词

多目标优化/粒子群优化算法/高斯-柯西变异/锦标赛选择

Key words

multi-objective optimization/particle swarm optimization algorithm/Gaussian-Cauchy variation/tournament selection

分类

信息技术与安全科学

引用本文复制引用

舒一鸣,戴毅茹..基于高斯-柯西混合变异的多目标粒子群算法[J].计算机与数字工程,2024,52(6):1593-1597,1603,6.

基金项目

上海市自然科学基金项目"考虑技术内生演变的能源-经济-环境系统集成模型研究"(编号:19ZR1461500)资助. (编号:19ZR1461500)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文