| 注册
首页|期刊导航|计算机与数字工程|基于滑动窗口和时空特征的微表情检测算法

基于滑动窗口和时空特征的微表情检测算法

马崟桓 黄树成 李明星

计算机与数字工程2024,Vol.52Issue(6):1617-1621,1801,6.
计算机与数字工程2024,Vol.52Issue(6):1617-1621,1801,6.DOI:10.3969/j.issn.1672-9722.2024.06.005

基于滑动窗口和时空特征的微表情检测算法

Micro-expression Detection Algorithm Based on Sliding Window and Spatio-temporal Features

马崟桓 1黄树成 1李明星2

作者信息

  • 1. 江苏科技大学计算机学院 镇江 212003
  • 2. 江苏大学京江学院电气信息工程学院 镇江 212003
  • 折叠

摘要

Abstract

Due to the inherent characteristics of short time and weak intensity of micro expression,it is still difficult to detect micro expression automatically.In order to improve the effect of micro expression detection,this paper proposes a micro expression detection algorithm based on sliding window and spatio-temporal features.Firstly,a micro expression video is divided into several sliding windows by using sliding window technology,then the spatio-temporal features are extracted from each sliding window,and the detection results of a single window are obtained by matching with micro expression SP pattern.Finally,the detection results of all sliding windows are fused.The algorithm is tested on CAS(ME)2 and SAMM data sets,and compared with the baseline results of the 2020 micro expression challenge(MEGC 2020).The results show that the algorithm improves the micro expression detection by 4.7%and 9.7%respectively on CAS(ME)2 and SAMM data sets,and 9.9%and 5.7%on the whole.The effectiveness of the algo-rithm is verified.

关键词

微表情检测/滑动窗口/时空特征

Key words

micro-expression detection/sliding window/spatio-temporal features

分类

信息技术与安全科学

引用本文复制引用

马崟桓,黄树成,李明星..基于滑动窗口和时空特征的微表情检测算法[J].计算机与数字工程,2024,52(6):1617-1621,1801,6.

基金项目

国家自然科学基金项目(编号:61772244)资助. (编号:61772244)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文