| 注册
首页|期刊导航|计算机与数字工程|基于马氏距离和Canopy改进K-means的交通聚类算法

基于马氏距离和Canopy改进K-means的交通聚类算法

徐文进 马越 杜咏慧

计算机与数字工程2024,Vol.52Issue(6):1630-1635,1649,7.
计算机与数字工程2024,Vol.52Issue(6):1630-1635,1649,7.DOI:10.3969/j.issn.1672-9722.2024.06.007

基于马氏距离和Canopy改进K-means的交通聚类算法

Traffic Clustering Algorithm Based on Markov Distance and Canopy Improved K-means

徐文进 1马越 1杜咏慧1

作者信息

  • 1. 青岛科技大学信息科学技术学院 青岛 266061
  • 折叠

摘要

Abstract

Clustering algorithms are often used in the research of traffic data,and different clustering algorithms have differ-ent characteristics.As one of the clustering algorithms,K-means has high accuracy and practicability,but its accuracy is easily af-fected by subjective selection of K value and determination of initial clustering center.In order to optimize the selection of clustering center and K value,MC-Kmeans algorithm is proposed In the proposed method,firstly,the K value is selected by canopy algo-rithm,and then the initial cluster center is determined according to the calculation criterion of Mahalanobis distance.Finally,the K value and the value of cluster center are clustered as the parameters of K-means MC-Kmeans algorithm is applied to New York taxi traffic data in a certain period of time for practical verification.The results show that compared with K-means algorithm,the pro-posed method has higher accuracy,better matches the actual traffic situation,and can better reflect the traffic hot spots in the re-gion.

关键词

K-means/Canopy算法/马氏距离/交通

Key words

K-means/Canopy algorithm/Markov distance/traffic

分类

信息技术与安全科学

引用本文复制引用

徐文进,马越,杜咏慧..基于马氏距离和Canopy改进K-means的交通聚类算法[J].计算机与数字工程,2024,52(6):1630-1635,1649,7.

基金项目

山东省自然科学基金项目(编号:2018GGX105005)资助. (编号:2018GGX105005)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文