| 注册
首页|期刊导航|计算机与数字工程|基于贝叶斯优化LightGBM的个人信用评估模型

基于贝叶斯优化LightGBM的个人信用评估模型

刘伯圣 邢进生

计算机与数字工程2024,Vol.52Issue(6):1697-1702,6.
计算机与数字工程2024,Vol.52Issue(6):1697-1702,6.DOI:10.3969/j.issn.1672-9722.2024.06.018

基于贝叶斯优化LightGBM的个人信用评估模型

Personal Credit Evaluation Model Based on Bayesian Optimization of LightGBM

刘伯圣 1邢进生1

作者信息

  • 1. 山西师范大学数学与计算机科学学院 临汾 041000
  • 折叠

摘要

Abstract

Aiming at the problems that traditional credit evaluation models cannot handle large-scale imbalanced data,train-ing time,and inaccurate evaluations,an optimized personal credit evaluation model is proposed.The model is based on the gradient boosting framework LightGBM,combined with the Bayesian global optimization algorithm for personal credit evaluation.In order to verify the applicability of the model,the Lending Club public data set is used to conduct related experiments and compared with the prediction results of logistic regression,random forest,and XGBoost models.The experimental results show that the personal credit evaluation effect of this model is better,the evaluation accuracy rate reaches 99.97%,and the F1-score of minority samples reaches 89.02%.

关键词

个人信用评估/集成学习/LightGBM/超参数优化/特征重要度

Key words

personal credit evaluation/integrated learning/LightGBM/hyperparameter optimization/importance of fea-tures

分类

信息技术与安全科学

引用本文复制引用

刘伯圣,邢进生..基于贝叶斯优化LightGBM的个人信用评估模型[J].计算机与数字工程,2024,52(6):1697-1702,6.

基金项目

山西省软科学基金项目(编号:2011041033-03)资助. (编号:2011041033-03)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文