|国家科技期刊平台
首页|期刊导航|计算机与数字工程|基于深度学习的畜牧业知识图谱构建

基于深度学习的畜牧业知识图谱构建OACSTPCD

Construction of Knowledge Graph of Animal Husbandry Based on Deep Learning

中文摘要英文摘要

针对畜牧业领域知识专业性强、共享困难等问题,通过数据获取、本体构建、知识抽取、知识存储四个步骤构建了涉及畜牧品种、兽病、兽药的畜牧业知识图谱,降低了畜牧业知识的应用门槛.首先以《国家畜禽遗传资源品种名录》中的33个物种大类为主体,从畜禽遗传资源普查信息系统、国家兽药基础数据库、兽医学专著等数据源中收集畜牧品种、兽病、兽药数据.其次定义畜牧业知识概念体系结构,构建了畜牧业领域本体.然后使用基于深度学习的方法和基于规则的方法抽取半结构化数据和非结构化数据中的实体和关系,共计实体6 138个,三元组27 870个.最后将抽取的知识图谱三元组数据保存到Neo4j图数据库中,为后续如智慧医疗、智能问答等应用提供了知识库支撑.

Aiming at the problems of highly specialized knowledge and difficult sharing in the field of animal husbandry,a knowledge graph of animal husbandry involving animal husbandry species,veterinary diseases,and veterinary drugs is constructed through four steps of data acquisition,ontology construction,knowledge extraction,and knowledge storage,which reduces the ap-plication threshold.Firstly,based on the 33 types of livestock breeds in the National Inventory of Livestock and Poultry Genetic Re-sources,animal husbandry species,veterinary diseases are collected,veterinary drugs from data sources such as the census infor-mation system of livestock and poultry genetic resources,the national veterinary drug basic database,and veterinary monographs.Secondly,the conceptual architecture of animal husbandry knowledge is defined,and the domain ontology of animal husbandry is constructed.Then deep learning-based methods and rule-based methods are used to extract entities and relationships in semi-struc-tured data and unstructured data,with a total of 6 138 entities and 27 870 triples.Finally,the extracted knowledge graph triplet da-ta is saved to the Neo4j graph database,which provides knowledge base support for subsequent applications such as intelligent medi-cal care and intelligent question answering.

戴高阳;孟小艳;张容祯

新疆农业大学计算机与信息工程学院 乌鲁木齐 830052

计算机与自动化

知识图谱深度学习畜牧业

knowledge graphdeep learninganimal husbandry

《计算机与数字工程》 2024 (006)

1746-1753,1847 / 9

新疆维吾尔自治区自然科学基金项目(编号:2019D01A50);新疆维吾尔自治区重点研发项目(编号:2017B01006-1)资助.

10.3969/j.issn.1672-9722.2024.06.026

评论