| 注册
首页|期刊导航|江苏水利|基于MDN和VMD-TPA-LSTM的泵站主机组劣化趋势预测

基于MDN和VMD-TPA-LSTM的泵站主机组劣化趋势预测

夏臣智 李英玉 吴子豪 李超顺 黃富佳 莫兆祥

江苏水利Issue(9):24-29,6.
江苏水利Issue(9):24-29,6.

基于MDN和VMD-TPA-LSTM的泵站主机组劣化趋势预测

Deterioration trend prediction of pump station host group based on MDN and VMD-TPA-LSTM

夏臣智 1李英玉 1吴子豪 2李超顺 2黃富佳 1莫兆祥1

作者信息

  • 1. 南水北调(江苏)数智科技有限公司,江苏南京 210019||江苏省泵站工程技术研究中心,江苏南京 210019
  • 2. 华中科技大学土木与水利工程学院,湖北武汉 430074
  • 折叠

摘要

Abstract

In order to improve the safe and stable operation capability of the pump station host group,analyze its operating status,obtain the health status of the unit equipment,and accurately predict its future development trend,a pump station host group degradation trend prediction model based on Mixed Density Networks(MDN),Variational Mode Decomposition(VMD),and Temporal Pattern Attention Long Short Term Memory Network(TPA-LSTM)based on temporal pattern and attention mechanism is proposed.The simulation results show that this method can accurately express the deterioration trend of the unit and effectively improve its prediction accuracy.

关键词

趋势预测/网络模型/泵站机组/MDN/VMD/TPA-LSTM

Key words

trend prediction/network model/pump station unit/MDN/VMD/TPA-LSTM

分类

建筑与水利

引用本文复制引用

夏臣智,李英玉,吴子豪,李超顺,黃富佳,莫兆祥..基于MDN和VMD-TPA-LSTM的泵站主机组劣化趋势预测[J].江苏水利,2024,(9):24-29,6.

基金项目

江苏省水利科技项目(2022001) (2022001)

江苏水利

1007-7839

访问量0
|
下载量0
段落导航相关论文