| 注册
首页|期刊导航|矿产保护与利用|矿井巷道风速智能感知技术研究进展

矿井巷道风速智能感知技术研究进展

陈炫中 王孝东 杨懿杰 吕玉琪 刘唱 杜青文 谢博

矿产保护与利用2024,Vol.44Issue(4):124-134,11.
矿产保护与利用2024,Vol.44Issue(4):124-134,11.DOI:10.13779/j.cnki.issn1001-0076.2024.04.014

矿井巷道风速智能感知技术研究进展

Research Progress on Intelligent Perception Technology for Wind Speed in Mine Tunnels

陈炫中 1王孝东 1杨懿杰 1吕玉琪 1刘唱 1杜青文 2谢博2

作者信息

  • 1. 昆明理工大学 国土资源工程学院,云南 昆明 650093
  • 2. 昆明理工大学 应急管理与公共安全学院,云南 昆明 650093
  • 折叠

摘要

Abstract

The intelligent mine ventilation systems is a key link of advancing intelligent mine construction and ensuring safe mine production.As the fundamental data source,ventilation parameters are essential for the intelligent construction of mine ventilation systems.However,during the development of intelligent wind speed sensing technology for mine tunnels,there are key scientific and technological issues that need to be addressed,such as optimizing sensor accuracy and reliability,correcting sensor wind measurement errors,intelligent and rapid prediction of average wind speed,and optimizing sensor layout.This paper studies the cutting-edge achievements in the field from aspects such as sensor technology and high-precision intelligent wind speed prediction,summarizes the advantages,disadvantages,and applicable scopes of various technologies,and proposes an intelligent prediction model for the average wind speed in tunnel sections based on the PSO-GRU neural network.This model can effectively improve the accuracy of calculating the average wind speed in mine tunnels and provide a theoretical reference for the development of intelligent sensing technology for ventilation parameters.

关键词

矿井通风/巷道风流特性/风速传感器/巷道平均风速/PSO-GRU神经网络

Key words

mine ventilation/tunnel airflow characteristics/wind speed sensor/average wind speed in tunnels/PSO-GRU neural network

分类

矿山工程

引用本文复制引用

陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博..矿井巷道风速智能感知技术研究进展[J].矿产保护与利用,2024,44(4):124-134,11.

基金项目

昆明理工大学引进人才科研启动基金项目(KKSY201721032) (KKSY201721032)

矿产保护与利用

OACSTPCD

1001-0076

访问量0
|
下载量0
段落导航相关论文