基于高分辨雷达距离像降维双谱特征的舰船目标识别OA
Ship target recognition based on reduced dimensionality integration bispectra feature of high-resolution radar range profiles
针对利用高分辨雷达距离像(HRRP)进行舰船目标识别的问题,本文研究了轴向、径向、圆周、局部四种降维积分双谱特征对舰船目标识别性能的区别.首先使用不同降维积分双谱对舰船目标HRRP进行特征提取,然后利用支持向量机(SVM)对提取的特征进行分类识别,最后通过仿真和实测实验分别分析了不同特征向量长度和训练样本数量对不同降维积分双谱识别性能的影响.仿真和实测结果表明,不同的降维积分双谱在达到最佳的识别性能时,需要选择不同的特征向量长度和训练样本数量.
In order to address the issue of using high-resolution radar range profiles(HRRPs)for ship target recognition,this paper investigates the differences in the performance of ship target recognition using four reduced dimensionality integration bispectra features including axially integrated bispectra(AIB),radially integrated bispectra(RIB),circularly integrated bispectra(CIB)and selected bispectra.Firstly,different reduced dimensional-ity integration bispectra are used to extract the features from ship target HRRP,and then support vector machine(SVM)is used to classify and recognize the extracted features.Finally,the effects of different feature vector lengths and training sample sizes on the recognition performance of different reduced dimensionality integration bispectra are analyzed through simulation and experiment.Simulation and experimental results show that when achieving optimal recognition performance,different reduced dimensionality integration bispectra require differ-ent feature vector lengths and training sample sizes to be selected.
姚国伟;葛美星;王弼;高森
中国电子科技集团公司第三十八研究所,合肥 230088
电子信息工程
高分辨雷达距离像降维双谱舰船目标识别
HRRPreduced dimensionality integration bispectraship target recognition
《空天预警研究学报》 2024 (004)
269-273,279 / 6
评论