|国家科技期刊平台
首页|期刊导航|南京理工大学学报(自然科学版)|基于协同训练的半监督图文关系抽取方法

基于协同训练的半监督图文关系抽取方法OA北大核心CSTPCD

Semi-supervised image-text relation extraction method based on co-training

中文摘要英文摘要

为克服获取大量关系标记样本的昂贵代价,提出基于协同训练的半监督图文关系抽取模型,以利用大量无标记的数据来提升图文关系抽取的准确性.首先,基于图像和文本 2 种模态构建图像视图和文本语义视图,在标记数据集上训练2 种不同视图的分类器;然后,将 2 种视图下的数据分别交叉输入另一视图的分类器,充分挖掘标记数据和未标记数据的信息,输出更准确的分类结果;最后,2 种视图下的分类器对未标记数据进行预测,以输出一致的结果.在公开数据集VRD和VG上的实验结果显示,与6 种较新的关系检测方法相比,该文方法图像视图和语义视图参数在VRD数据集上分别提升了2.24%、1.41%,在VG数据集上提升了3.59%.

In order to overcome the expensive cost of obtaining a large number of relational labeled samples,a semi-supervised image-text relationship extraction model based on co-training is proposed to improve the accuracy of image-text relationship extraction by using a large amount of unlabeled data.First,an image view and a text semantic view are constructed based on two modalities of image and text,and classifiers of two different views are trained on the labeled dataset;then,the data under the two views are crossed into the classifier of the other view,fully mining the information of labeled data and unlabeled data to output more accurate classification results;finally,the classifiers are used in both views to predict unlabeled data to output consistent results.The experimental results on the public datasets VRD and VG show that compared with 6 current state-of-the-art relationship detection methods,the proposed method improves by 2.24%and 1.41%respectively in the VRD dataset for the image view and text semantic view,and 3.59%in the VG dataset.

王亚萍;王智强;王元龙;梁吉业

山西大学 计算机与信息技术学院,山西 太原 030006山西大学 计算机与信息技术学院,山西 太原 030006||山西大学 计算智能与中文信息处理教育部重点实验室,山西 太原 030006

计算机与自动化

协同训练半监督多模态关系抽取视觉关系检测

co-trainingsemi-supervisedmultimodalrelationship extractionvisual relationship detection

《南京理工大学学报(自然科学版)》 2024 (004)

451-459 / 9

国家自然科学基金(61876103;61906111)

10.14177/j.cnki.32-1397n.2024.48.04.006

评论