基于用户层次聚类的联邦学习优化方法OA北大核心CSTPCD
Federated learning optimization method based on user hierarchical clustering
联邦学习通过分布式机器学习训练出一种全局模型,该模型能够泛化所有的本地用户数据,以达到保护用户数据隐私的目的.由于用户间的行为、环境等不同,造成了数据异构问题,进而使得用户局部模型的性能往往远高于全局模型.针对上述问题,该文提出了一种基于用户层次聚类的联邦学习方法.设计了一种联邦学习收敛评估的方法,用于判断全局模型收敛程度;当全局模型收敛时进行聚类用户操作,能够更加准确地找出相似程度较高的用户;通过余弦相似性的层次聚类方法,将具有相似性的用户进行聚类操作,从而减少因数据异构带来的影响.此外该文还采用较大深度的模型WideResNet提高用户本地训练精度.该文采用数据集EMNIST、CIFAR10,调整用户数据之间的角度,分别进行了两类用户和三类用户的聚类联邦学习实验.实验结果显示,与相关经典联邦学习算法FedAvg相比,采用聚类策略后,其训练准确度提高约10%.
Federated learning can generalize all local user data to achieve the purpose of protecting user data privacy by training a global model by distributed machine learning.Due to differences in user behaviors and environments,data heterogeneity is caused,and the performance of user local models is often much higher than that of global models.In response to the above problems,this paper proposes a federated learning method based on user hierarchical clustering.This paper designs a federated learning convergence evaluation method to determine the degree of convergence of the global model;when the global model converges,clustering user operations can more accurately find users with a higher degree of similarity;through the cosine similarity level hierarchical clustering,the clustering method aggregates similar users through clustering operations,thereby reducing the impact of data heterogeneity.In addition,this paper also uses a larger depth model WideResNet to improve the accuracy of the user's local training.This paper uses the data sets EMNIST and CIFAR10 to adjust the angle between user data,and conducts cluster federated learning experiments for two types of users and three types of users respectively.The experimental results show that compared with the traditional federated learning algorithm FedAvg,the training accuracy of federated learning after clustering is improved by about 10%.
谭玉玲;欧国成;曹灿明;柴争议
罗定职业技术学院 信息工程系,广东 罗定 527200||北京师范大学 教育技术学院,北京 100082罗定职业技术学院 信息工程系,广东 罗定 527200天津工业大学 计算机科学与技术学院,天津 300387
计算机与自动化
联邦学习数据异构层次聚类余弦相似性WideResNet
federated learningheterogeneous datahierarchical clusteringcosine similarityWideResNet
《南京理工大学学报(自然科学版)》 2024 (004)
469-478,488 / 11
国家自然科学基金(61972456);广东省普通高校青年创新人才类项目(2019GKQNCX114)
评论