| 注册
首页|期刊导航|人民长江|基于TCN-自适应的地下洞室围岩变形异常数据识别

基于TCN-自适应的地下洞室围岩变形异常数据识别

吴忠明 李天述 张波 周明 张瀚 周靖人

人民长江2024,Vol.55Issue(8):216-221,6.
人民长江2024,Vol.55Issue(8):216-221,6.DOI:10.16232/j.cnki.1001-4179.2024.08.029

基于TCN-自适应的地下洞室围岩变形异常数据识别

Abnormal data recognition for surrounding rock deformation of underground caverns based on TCN and criterion adaptation

吴忠明 1李天述 2张波 2周明 2张瀚 3周靖人3

作者信息

  • 1. 浙江华东测绘与工程安全技术有限公司,浙江杭州 311122
  • 2. 中国电建集团华东勘测设计研究院有限公司,浙江杭州 311122
  • 3. 四川大学山区河流开发保护全国重点实验室,四川 成都 610065||四川大学水利水电学院,四川成都 610065
  • 折叠

摘要

Abstract

The deformation data of surrounding rock in underground caverns of hydropower stations have the characteristics of uncertain changes and short sequence samples,the traditional abnormal data recognition method has high missed recognition rate and misjudgment rate.With the development of intelligent technology,it is a hot topic to establish a more reliable abnormal data recognition method through neural network.However,the traditional neural network has some problems,such as weak temporal correlation and complex calculation.Therefore,an abnormal data recognition algorithm for surrounding rock deformation of under-ground caverns based on time-domain convolutional neural network(TCN)and criterion adaptation was proposed in this paper.The algorithm considered the relationship between the front and back of the monitoring data sequence,and used TCN technology to establish a more reliable sequence model.At the same time,according to the characteristics of monitoring data of underground cav-erns,the optimal recognition criterion of adaptive matching was realized by considering three aspects of error median,data fluctua-tion and instrument accuracy.The algorithm was applied to recognition of abnormal data of surrounding rock deformation of under-ground cavern in Yebatan Hydropower Station.It was proved that the algorithm can effectively avoid the problems of gradient ex-plosion,disappearance and time-consuming,which greatly improved the efficiency and recognition rate of abnormal value analy-sis.Relevant experiences can be used as reference in the recognition of abnormal monitoring data of similar projects.

关键词

异常数据识别/地下洞室/深度学习/时域卷积神经网络/标准自适应

Key words

abnormal data recognition/underground cavern/deep learning/temporal convolutional network(TCN)/criterion adaptation

分类

建筑与水利

引用本文复制引用

吴忠明,李天述,张波,周明,张瀚,周靖人..基于TCN-自适应的地下洞室围岩变形异常数据识别[J].人民长江,2024,55(8):216-221,6.

基金项目

四川省科技厅重点研发项目(2022YFS0535) (2022YFS0535)

人民长江

OA北大核心CSTPCD

1001-4179

访问量7
|
下载量0
段落导航相关论文