微博数据与地理信息数据结合的洪涝淹没概率估计方法OACSTPCD
Estimation of Flood Inundation Probability by Combining Weibo Data and Geographic Information Data
近年来极端天气使持续性强降雨频发,导致洪水灾害变得更加频繁和不规律,严重影响到人民安全及经济建设,而评估洪涝的淹没概率能加强洪涝灾害的应急管理能力.传统的遥感数据受限于重返周期及气象条件,水文模型则受限于数据输入与参数设置.在上述数据与模型方法的局限性下,利用社交媒体——微博数据具有时效性强且海量的特点,以 2021 年"7·20"河南暴雨事件为例,提出了一种通过融合数字高程模型及其衍生数据、降雨数据、水系数据与灾中微博文本数据来估算灾中洪水淹没概率分布的方法.利用反距离衰减函数,根据水深点生成实时更新的淹没概率图,然后采用高斯函数对地理信息数据进行权重分配,得到综合叠加后的最终空间连续淹没概率图.结果显示,在雷达影像验证中,获得 92.75%的准确率;在官媒、微博图片信息的验证中,获得 93.33%的准确率.
In recent years,extreme weather has caused frequent and continuous heavy rainfall,resulting in more frequent and irregular flood disasters,which seriously affects people's safety and economic development.The assessment of flood inundation probability can strengthen the emergency management ability of flood disasters.Traditional remote sensing data are limited by re-entry periods and meteorological conditions,while the hydrological models are limited by data input and parameter settings.Considering the limitations of the above data and model methods,and the characteristics of time-sensitive and massive of Weibo data,a method is proposed to estimate the probability distribution of flood inundation in disasters by integrating digital elevation model and its derived data,rainfall data,water system data and Weibo data in disasters.The inverse distance attenuation function is used to generate a real-time updated inundation probability map of the whole map according to the water depth point,and then the weight allocation of the geographic information data is combined with the Gaussian function to obtain the final spatial continuous inundation probability map after comprehensive superposition.The"7·20"Henan rainstorm event in 2021 is taken as an example,and the results show that the accuracy of radar images is 92.75%,and the accuracy of official media and Weibo image information verification is 93.33%.
崔志美;黄维;黄志都;邬蓉蓉
广西电网有限责任公司电力科学研究院,广西 南宁 530000
地理科学
洪涝淹没概率估计微博数据反距离高斯
flood inundationprobability estimationWeibo datainverse distanceGaussian
《水力发电》 2024 (009)
22-29,43 / 9
广西电网有限责任公司电力科学研究院研究项目(GXKJXM20222160);国家重点研发计划青年科学家项目(2021YFF-0704400)
评论