应用自适应注意力机制U-net的地震数据高分辨处理OA北大核心CSTPCD
High-resolution processing of seismic data using adaptive attention mechanism U-net
随着油气勘探开发的不断深入,薄储层与岩性油气藏逐渐成为重要的勘探目标,这也对地震资料的分辨率提出了更高的要求.文中提出了一种基于自适应注意力机制的U-net地震数据高分辨处理方法.该方法首先利用U-net结构学习地震数据的特征表示,通过下采样过程的编码器提取地震数据的抽象特征,然后通过上采样的解码器进行特征重建和细化.在上采样的过程中引入了注意力机制,用于自适应地调整网络对不同地震特征的关注程度,网络能够更加有效地捕捉到地震数据更多的细节和特征.Marmousi模型合成地震记录和实际数据实验结果表明,新网络比原U-net误差更小、更稳定,可有效提高预测精度,实现对地震数据的高分辨率处理.
With the deepening of oil and gas exploration and development,thin and lithologic reservoirs have gradually become important exploration targets,which also leads to higher requirements for the resolution of seismic data.This paper presents a high-resolution seismic data processing method of U-net based on an adap-tive attention mechanism.This method first uses the U-net structure to learn the feature representation of seis-mic data,extracts the abstract features of seismic data through the encoder of the down-sampling process,and then reconstructs and refines the features through the decoder of the up-sampling process.The attention mecha-nism is introduced in the process of up-sampling,which is utilized to adjust the attention of the network to diffe-rent seismic features.Therefore,the network can capture more details and features of the seismic data more effectively.The experimental results of synthetic seismic records of the Marmousi model and real data show that the new network has less error and is more stable than the original U-net,as it can effectively improve the prediction accuracy and realize the high-resolution processing of seismic data.
赵明;赵岩;沈东皞;王建强;代显才
油气资源与勘探技术教育部重点实验室(长江大学),湖北武汉 430100||长江大学地球物理与石油资源学院,湖北武汉 430100中国石化西北油田分公司石油工程监督中心,新疆轮台 841600东方地球物理公司国际部,河北涿州 072751中国石油新疆油田公司准东采油厂,新疆阜康 831511
地质学
地震数据处理高分辨率U-net注意力机制自适应
seismic data processinghigh-resolutionU-netattention mechanismadaptive
《石油地球物理勘探》 2024 (004)
675-683 / 9
本项研究受油气资源与勘探技术教育部重点实验室青年创新团队项目"智能地震数据处理与解释"(PI2023-01)资助.
评论