|国家科技期刊平台
首页|期刊导航|石油地球物理勘探|基于多尺度窗口生成器网络的抽油机噪声压制

基于多尺度窗口生成器网络的抽油机噪声压制OA北大核心CSTPCD

Noise suppression of pumping unit based on multi-scale window generator network

中文摘要英文摘要

在老油田的勘探开发中,抽油机噪声形成强干扰,严重降低了地震资料的信噪比.为此,提出了一种基于多尺度窗口生成器网络进行抽油机噪声压制的方法.构建的网络主要由双层编码器—解码器组成,结合不同层的特征信息可获得准确的去噪结果;在不同层采用不同尺寸的窗口进行特征提取,可以有效地扩大神经网络的感知范围,并从抽油机噪声中提取更多有用的特征.为了防止网络的退化,编码器和解码器的每个块中都分别使用了残差连接.编码器残差块部分采用了卷积核数量中间大、两端小的反瓶颈设计,可以提取地震数据更多的特征;解码器使用了编码器五分之一的卷积层数,加快了模型训练以及地震数据重建的速度.通过这种方式构建的网络可以有效地利用多尺度语义信息压制地震数据中的抽油机噪声.模拟数据和实际数据实验结果均表明,与DnCNN、GAN和MLGNet相比,所提方法能够获得高质量的去噪结果,并最大程度地保留有效数据.

The noise of the pumping unit strongly interferes with the exploration and development of old oil fields and seriously reduces the signal-to-noise ratio of seismic data.Therefore,a pumping unit noise suppres-sion method based on a multi-scale window generator network is proposed.The constructed network is mainly composed of a double-layer encoder-decoder structure,and accurate denoising results can be obtained by com-bining characteristic information of different layers.The utilization of different-sized windows in different layers for feature extraction can effectively expand the sensing range of the neural network and extract more useful fea-tures from the pumping unit noise.To prevent the degradation of the network,residual connections are used re-spectively in each block of the encoder and decoder.The residual block of the encoder adopts the anti-bottle-neck design with a large amount of convolution kernels in the middle and small at both ends to extract more fea-tures of seismic data.The decoder uses one-fifth of the convolutional layers of the encoder,speeding up model training and seismic data reconstruction.The network constructed in this way can effectively suppress pumping unit noise in seismic data by using multi-scale semantic information.Both simulated data and real data experi-mental results show that compared with DnCNN,GAN,and MLGNet,the proposed method can obtain high-quality denoising results and retain valid data to the greatest extent.

马一凡;文武;薛雅娟;文晓涛;徐虹

成都信息工程大学计算机学院,四川成都 610225成都信息工程大学通信工程学院,四川成都 610225成都理工大学地球物理学院,四川成都 610225

地质学

地震资料噪声压制多尺度窗口生成器信噪比

seismic datanoise suppressionmulti-scale windowgeneratorsignal-to-noise ratio

《石油地球物理勘探》 2024 (004)

684-691 / 8

本项研究受四川省中央引导地方科技发展专项"岩石物理驱动的非常规油气地震多参数预测理论与方法研究"(2023ZYD0158)和四川省自然科学基金项目"四川盆地碳酸盐岩储层的脉冲神经网络识别理论及方法研究"(2023NSFSC0258)联合资助.

10.13810/j.cnki.issn.1000-7210.2024.04.004

评论