| 注册
首页|期刊导航|石油地球物理勘探|基于人工智能的地震初至拾取方法研究进展

基于人工智能的地震初至拾取方法研究进展

易思梦 唐东林 赵云亮 李恒辉 丁超

石油地球物理勘探2024,Vol.59Issue(4):899-914,16.
石油地球物理勘探2024,Vol.59Issue(4):899-914,16.DOI:10.13810/j.cnki.issn.1000-7210.2024.04.027

基于人工智能的地震初至拾取方法研究进展

A review of artificial intelligence-based seismic first break picking methods

易思梦 1唐东林 1赵云亮 1李恒辉 1丁超2

作者信息

  • 1. 西南石油大学机电工程学院,四川成都 610500
  • 2. 成都工业学院智能制造学院,四川成都 611730
  • 折叠

摘要

Abstract

Seismic first break picking plays a crucial role in providing vital information concerning subsurface structures and seismic activities,thereby holding significance for seismic exploration and geological research.The automatic and accurate picking of first-arrival waves from low signal-to-noise ratio data has garnered consi-derable attention from scholars.This paper provides a comprehensive review of artificial intelligence-based methods employed for seismic picking.It presents an in-depth analysis of the principles,characteristics,and de-velopmental trajectory of five distinct types of methods:clustering,support vector machines(SVM),back-propagation neural network(BPNN),convolutional neural networks(CNN),and recurrent neural networks(RNN).Clustering,SVM and BPNN methods demonstrate a relatively intuitive and interpretable nature,al-beit requiring manual feature extraction.Conversely,CNN and RNN methods possess the ability to autono-mously learn seismic data features,yet they rely on substantial volumes of labeled data to facilitate their learn-ing process.Furthermore,this paper discusses the challenges and future research directions of seismic first break picking.Specifically,it emphasizes the imperative need to further advance the real-time capabilities for picking first break under extremely low signal-to-noise ratios and to further develop the lightweight of the net-work.

关键词

地震勘探/人工智能/聚类/支持向量机/神经网络

Key words

seismic exploration/artificial intelligence/clustering/support vector machine(SVM)/neural network

分类

天文与地球科学

引用本文复制引用

易思梦,唐东林,赵云亮,李恒辉,丁超..基于人工智能的地震初至拾取方法研究进展[J].石油地球物理勘探,2024,59(4):899-914,16.

基金项目

本项研究受四川省科技计划项目"页岩气微震分布式光纤检测技术研究"(2021YFSY0024)、成都市技术创新研发项目"油气装备腐蚀缺陷超声智能检测机器人"(2018-YF05-00201-GX)和四川省市场监督管道局科技计划项目"超声干耦合测厚技术在压力容器检验中的应用研究"(SCSJZ2022007)联合资助. (2021YFSY0024)

石油地球物理勘探

OA北大核心CSTPCD

1000-7210

访问量0
|
下载量0
段落导航相关论文