| 注册
首页|期刊导航|计算机技术与发展|边缘场景下基于DDQN的容器组调度策略

边缘场景下基于DDQN的容器组调度策略

王钰童 顾进广

计算机技术与发展2024,Vol.34Issue(9):16-22,7.
计算机技术与发展2024,Vol.34Issue(9):16-22,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0163

边缘场景下基于DDQN的容器组调度策略

Container Group Scheduling Optimization Strategy Based on DDQN in Edge Scenarios

王钰童 1顾进广1

作者信息

  • 1. 武汉科技大学 计算机科学与技术学院,湖北 武汉 430065||武汉科技大学 智能信息处理与实时工业系统湖北省重点实验室,湖北 武汉 430065||武汉科技大学 大数据科学与工程研究院,湖北 武汉 430065||国家新闻出版署富媒体数字出版内容组织与知识服务重点实验室,北京 100038
  • 折叠

摘要

Abstract

The industrial Internet is populated with a large number of on/offline container services deployed on edge servers.On the on hand,these container services bear the demand for low latency and high response,and on the other hand,they have intricate invocation re-lationships.The usual scheduling strategies for edge clusters do not take into account the dependencies between container services,leading to dependent container services possibly being dispersed across different edge nodes during scheduling,thereby generating a large number of cross-node calls and causing additional resource loss.We propose an optimization strategy for container group scheduling in edge scenarios for containers with dependencies.Firstly,the CDSC(Container Dependency Spectral Clustering)is used to divide dependent containers into one or more container groups,maximizing the dependency strength within groups and minimizing it between groups,to reduce the frequency of cross-node calls.Then,by introducing the Double Deep Q-Network model(Double DQN),the container group is used as the basic scheduling unit,with container dependency overhead,cluster and intra-node load as optimization targets.The strategy adaptively learns and optimizes scheduling strategies according to the actual situation of edge nodes,enabling it to cope with complex and changing edge cluster situations.Experimental results show that compared to traditional heuristic algorithms and deep reinforcement learning algorithms,the proposed algorithm has significant advantages in terms of container service response time,cluster and node load.

关键词

调度优化/深度强化学习/容器聚类/集群/容器依赖开销

Key words

scheduling optimization/deep reinforcement learning/container clustering/cluster/container dependency overhead

分类

信息技术与安全科学

引用本文复制引用

王钰童,顾进广..边缘场景下基于DDQN的容器组调度策略[J].计算机技术与发展,2024,34(9):16-22,7.

基金项目

武汉市重点研发计划(2022012202015070) (2022012202015070)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文