| 注册
首页|期刊导航|计算机技术与发展|引入位置编码机制对抗网络的文本生成模型

引入位置编码机制对抗网络的文本生成模型

贺妮 牟莉 万晓慧

计算机技术与发展2024,Vol.34Issue(9):154-158,5.
计算机技术与发展2024,Vol.34Issue(9):154-158,5.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0146

引入位置编码机制对抗网络的文本生成模型

Generative Adversarial Networks with Position Encoding for Text Generation

贺妮 1牟莉 1万晓慧1

作者信息

  • 1. 西安工程大学 计算机科学学院,陕西 西安 710600
  • 折叠

摘要

Abstract

For the problem that text logic is not logical due to the disorder of the position relationship between words when text is generated in the current adversarial network text generation model,we propose a text generation model(Position-Encoding GAN,PE_GAN)which introduces a position encoding mechanism to adversarial network,and discusses and validates it.By introducing positional encoding to the adversarial neural network model,the position relationship between words in the text is marked using word vectors with positional encoding.The generator and discriminator utilize the gate mechanism of the GRU neural network to alleviate gradient vanishing,while employing the Monte Carlo strategy to reduce the risk of overfitting and improve the accuracy of generated text.To verify the effectiveness of the PE_GAN,open source data and text from novels and news articles obtained through web scraping area used as the experimental dataset.It is showed that the difference in loss values between generator and discriminator in this model is smaller than that of the comparison models,indicating the generated text is closer to real text.In comparison to the Gumbel-softmax GAN,seq-GAN and LFMGAN,the PE_GAN shows a signficant improvement in BLEU-2,BLEU-3 and BLEU-4 values.This suggests that intro-ducing positional encoding mechanism can improve the logical coherence of the generated text,indicating that the model has good appli-cability.

关键词

生成对抗神经网络/位置编码/文本生成/GRU神经网络/蒙特卡洛策略

Key words

generative adversarial neural network/position encoding/text generation/GRU(Gated Recurrent Unit)neural network/Monte Carlo strategy

分类

信息技术与安全科学

引用本文复制引用

贺妮,牟莉,万晓慧..引入位置编码机制对抗网络的文本生成模型[J].计算机技术与发展,2024,34(9):154-158,5.

基金项目

陕西省科技计划项目(2019CGXNG-015) (2019CGXNG-015)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文