| 注册
首页|期刊导航|物探与化探|基于可伸缩型注意力机制的神经网络地震数据去噪方法

基于可伸缩型注意力机制的神经网络地震数据去噪方法

张敏 许一卓 易继东

物探与化探2024,Vol.48Issue(4):1065-1075,11.
物探与化探2024,Vol.48Issue(4):1065-1075,11.DOI:10.11720/wtyht.2024.1380

基于可伸缩型注意力机制的神经网络地震数据去噪方法

A method for seismic data denoising based on the neural network with a retractable attention mechanism

张敏 1许一卓 1易继东1

作者信息

  • 1. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580||深层油气重点实验室,山东青岛 266580
  • 折叠

摘要

Abstract

Random noise in seismic data impairs the quality of the data,thus affecting the accuracy of subsequent processing and inter-pretation.Conventional denoising methods,constrained by prior conditions,exhibit low efficiency.Neural networks possess a strong fea-ture extraction ability,which can make up for these shortcomings.However,the limitations of convolution kernels in conventional neural networks may lead to the loss of global information.Hence,this study introduced a retractable attention mechanism to the convolutional neural network(CNN).This mechanism presents both dense and sparse self-attention modules in the CNN.The alternate use of the two self-attention modules can significantly enhance the performance of the CNN and expand the receptive field.The shallow and deep fea-tures of seismic data were extracted using the convolutional layer and self-attention modules.Combined with CNN's local modeling abili-ty and Transformer's global modeling ability,they contributed to enhancing CNN's global interaction and ability to reduce noise and deal with details.As indicated by the experimental results of synthetic and field data,the method used in this study can more effectively sup-press noise and retain effective information of seismic data compared to Unet and DnCNN,significantly improving the signal-to-noise ra-tio and thus assisting in the processing and interpretation of seismic data.

关键词

随机噪声/卷积神经网络/可伸缩型注意力机制/Transformer

Key words

random noise/convolutional neural network/retractable attention mechanism/Transformer

分类

天文与地球科学

引用本文复制引用

张敏,许一卓,易继东..基于可伸缩型注意力机制的神经网络地震数据去噪方法[J].物探与化探,2024,48(4):1065-1075,11.

基金项目

国家自然科学基金项目(42074133) (42074133)

中石油重大科技合作项目(ZD2019-183-003) (ZD2019-183-003)

物探与化探

OACSTPCD

1000-8918

访问量0
|
下载量0
段落导航相关论文