| 注册
首页|期刊导航|现代电子技术|基于深度强化学习的水声网络公平跨层MAC协议

基于深度强化学习的水声网络公平跨层MAC协议

韩翔 张育芝 李梦凡 冯晓美

现代电子技术2024,Vol.47Issue(17):1-9,9.
现代电子技术2024,Vol.47Issue(17):1-9,9.DOI:10.16652/j.issn.1004-373x.2024.17.001

基于深度强化学习的水声网络公平跨层MAC协议

Deep reinforcement learning based proportional-fair optimized cross-layer MAC protocol for underwater acoustic networks

韩翔 1张育芝 1李梦凡 1冯晓美1

作者信息

  • 1. 西安科技大学 通信与信息工程学院,陕西 西安 710054
  • 折叠

摘要

Abstract

In view of the unfair channel allocation and energy-constrained nodes in underwater acoustic communication heterogeneous networks,a proportional-fair optimized cross-layer medium access control(POCL-MAC)protocol is proposed based on deep reinforcement learning(DRL).It strives to optimize fair channel access and power control by cross-layer joint.By feedback ACK packets,the channel conflict outcomes and receiver-side signal-to-noise ratio(SNR)under delay status are obtained.Autonomous learning is carried out based on the state,action and reward sequence of DRL to adjust the access slot and transmission power of cognitive users.Fairness function is employed to achieve proportional fairness between cognitive users and primary users' throughput performance in heterogeneous networks.A joint state sequence and independent reward function are designed to enhance the accuracy of sub-action decisions in cross-layer joint optimization without increasing neural network complexity.Simulation results demonstrate that the proposed algorithm can achieve near-optimal fairness throughput performance while exhibiting better energy utilization efficiency in comparison with the traditional DRL-based algorithms.

关键词

深度强化学习/水声通信网络/MAC协议/冲突避免/功率优化/信道分配

Key words

DRL/underwater acoustic communication network/MAC protocol/conflict avoidance/power optimization/channel allocation

分类

电子信息工程

引用本文复制引用

韩翔,张育芝,李梦凡,冯晓美..基于深度强化学习的水声网络公平跨层MAC协议[J].现代电子技术,2024,47(17):1-9,9.

基金项目

陕西省教育厅科研项目(22JK0454) (22JK0454)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文