融合共享Net的跨模态脑肿瘤分割方法OA北大核心CSTPCD
Cross-modal brain tumor segmentation method based on fusion shared Net
为了增强脑肿瘤图像分割算法的泛化能力,提出一种融合共享Net的跨模态分割框架.该框架包括风格转换、跨域训练和自适应判别三个阶段.首先,采用贝塞尔曲线进行域变换,从多种与源域灰度不同的图像去模拟不可见的目标域;其次,构建基于轻量级尺度注意力模块的共享Net模型,将多种风格的灰度图像输入到共享Net中来学习不同域的权重信息;最后,在模型推理时,通过自适应判别器来自适应选择最佳分割结果.仿真结果表明,所提共享Net算法能实现有效泛化的同时,在分割性能和计算效率上均优于当前最先进的方法.
A cross-modal segmentation framework based on shared Net is proposed to enhance the generalization ability of the brain tumor image segmentation algorithm.The framework consists of three stages,including style conversion,cross-domain training and adaptive discrimination.The Bézier curve is used for the domain variation,and the invisible target domain is simulated based on a variety of images whose grayscales are different from the source domain.A shared Net model based on the lightweight scale attention module is constructed,and multiple styles of gray images are input into the shared Net to learn the weight information of different domains.The optimal segmentation results are selected adaptively by an adaptive discriminator during model inference.Simulation results show that the proposed shared Net algorithm can achieve effective generalization,which is superior to the most advanced methods in segmentation performance and computational efficiency.
李志刚;张艺荣
华北理工大学 人工智能学院,河北 唐山 063210||河北省工业智能感知重点实验室,河北 唐山 063210
电子信息工程
U-Net医学图像分割脑肿瘤跨模态域泛化贝塞尔曲线
U-Netmedical image segmentationbrain tumorcross-modedomain generalizationBézier curve
《现代电子技术》 2024 (017)
47-52 / 6
河北省高等学校科学技术研究项目(ZD2021088);河北省海洋生态修复与智慧海洋工程研究中心开放基金项目(HBMESO2315)
评论