|国家科技期刊平台
首页|期刊导航|现代电子技术|基于变分模态分解和奇异谱分析的激光雷达信号去噪方法

基于变分模态分解和奇异谱分析的激光雷达信号去噪方法OA北大核心CSTPCD

LiDAR signal noise reduction algorithm based on variational mode decomposition and singular spectrum analysis

中文摘要英文摘要

激光雷达信号中往往含有较多的噪声,这些噪声不仅降低了信号质量,还影响后续的云-气溶胶层检测、气溶胶光学厚度反演等.文中改进了一种基于变分模态分解的激光雷达信号降噪方法,该方法首先考虑模态分量与激光雷达信号的相关性,通过皮尔逊相关系数法提取模态分量中的有效信号;其次,针对变分模态分解后的中低频振荡现象,使用奇异谱分析法进行二次滤波,进一步提高信噪比.为了验证该方法的有效性,文中模拟了晴朗天气下、有云天气下不同信噪比的星载激光雷达含噪声信号,分别采用小波变换、局部经验模态分解、传统的变分模态分解方法和所提方法进行降噪处理,并对其降噪性能进行比较.实验结果表明,改进的变分模态分解方法能够有效提高激光雷达信号的信噪比.

The LiDAR signals often contain more noise,which not only degrades the signal quality,but also affects the subsequent cloud-aerosol layer detection and aerosol optical thickness inversion.In view of this,a LiDAR signal noise reduction method based on variational mode decomposition(VMD)is improved.The correlations between the mode components and the LiDAR signals are taken into account.The effective signals in the mode components are extracted by the method of Pearson correlation coefficient(PCC).In terms of the low and medium frequency oscillations after the implementation of VMD,secondary filtering is performed with singular spectrum analysis(SSA)to further improve the signal-to-noise ratio(SNR).The effectiveness of the proposed method is verified.The satellite-borne LiDAR noise-containing signals with different SNRs when it is clear or cloudy are simulated.The wavelet transform(WT),the local empirical mode decomposition(EMD),the traditional VMD method and the proposed method are adopted to perform the noise reduction process,and their performances of noise reduction are contrasted.The experimental results show that the improved VMD method can improve the SNR of LIDAR signals effectively.

牛克金;邓文彬

新疆大学 建筑工程学院,新疆 乌鲁木齐 830017

电子信息工程

激光雷达变分模态分解奇异谱分析经验模态分解小波变换去噪

LiDARVMDSSAEMDWTdenoising

《现代电子技术》 2024 (017)

53-57 / 5

国家自然科学基金项目(51868074);新疆维吾尔自治区自然科学基金资助项目(2022D01C55)

10.16652/j.issn.1004-373x.2024.17.009

评论